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1   Introduction 

Background 

Military smokes and obscurants (S/0) are an integral component of significant 
training and testing missions. Effects of these compounds on natural habitats 
and resident populations are not well documented. It is perceived that exposure 
to these compounds may have adverse effects on threatened and endangered 
(T&E) species (listed pursuant to the Endangered Species Act, 16 USC 1531- 
1544) that reside on military installations (Getz et al. 1996). Ecological system 
responses to natural disturbance regimes and anthropogenic perturbations 
(disturbances caused by humans) are extremely variable, and often with 
significant spatial and temporal confounding effects (Noss and Cooperrider 
1994). Careful planning and execution of valid experimental designs, sampling 
strategies, field data collection methods, and statistical analyses protocols are 
essential for determining the cause-effect relationships among ecosystem 
elements and chemical agents. Although long-term ecological sustainability of 
training/testing lands is also an important issue for military readiness, 
compliance with environmental laws such as the Endangered Species Act is 
critical to comprehensive land management. Federal listed species exhibit low or 
seriously dechning population densities, or have very limited distributional 
ranges — often both. Experiments to detect training/testing effects on T&E 
species populations must, therefore, be very sensitive and possess high 
statistical power. On the other hand, these experiments dealing with the effects 
or fate of S/O may by their very nature be relatively expensive to implement and 
to collect field data compared with typical ecological field studies. Optimal 
sample size, therefore, must be carefully determined with serious consideration 
of field and objective-relevant experimental design, statistical power, sampling 
variance, measurement precision, and valid statistical analysis procedures. 

Objectives 

The objectives of this phase of the study were to evaluate, select, and recommend 
sampling strategies and statistical analysis procedures appropriate to determine 
the environmental effects of military S/O on T&E species and the ecosystems 
that support them.  These sampling designs and analysis procedures will allow 
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installation natural resource managers and other personnel to use statistically 
valid techniques to measure effects of S/O on T&E species in order to provide in- 
formation on which to base actions taken to ensure compliance with the Endan- 
gered Species Act and other environmental regulations. 

Approach 

Current literature on ecological and statistical aspects of experimental design; 
field sampling and modeling for aerial contaminants; and ecosystem processes 
relevant to rare plant and animal species was reviewed. Ecological assessment 
methodologies relevant to identification and characterization of potential direct 
and indirect S/O effects on T&E species and their habitats were also reviewed. 
Sampling designs and statistical analysis procedures for assessing the effects of 
S/O on T&E species and their associated habitats were selected from the 
synthesis of these reviews and their applications discussed. Many realistic, but 
hypothetical, interactions between S/O materials and various species have been 
utilized for illustrative purposes. The authors do not imply, or propose, that 
such studies are required. 

Scope 

This report provides a general overview of sampling designs and statistical 
procedures for assessing the effects of military S/O on T&E species in terrestrial 
and aquatic ecosystems. A broader technical discussion of ecological design and 
analysis, which could serve as a companion to this report, can be found in 
Krzysik (1998a). Laboratory and greenhouse experiments are not addressed in 
this report. Literally hundreds of designs and analysis procedures are possible; 
the ones discussed in this report were selected for ecological relevance, 
simplicity, ease of execution, cost-effectiveness, statistical robustness, and 
applicability of results with respect to providing Department of Defense (DoD) 
managers with tools for making effective, defensible decisions on ways to 
demonstrate the effect or lack of effect of military S/O on T&E species. This 
report is intended to lay a basic foundation for understanding the following areas 
as they are applied to studies of S/O effects on T&E species: (1) principles of 
experimental design and statistical analysis procedures, (2) strengths and 
weaknesses of each design and analytical procedure, and (3) statistical and 
ecological rationale for selection of particular designs. Most aspects of this 
systematic approach are fully applicable to studies of other effects on other 
species, and are not limited to S/O effects. 
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This report is designed to assist DoD installation natural resource managers 
who are concerned with comprehensive land management, compliance with 
environmental laws, and the long-term ecological sustainability of military 
training and testing lands. The report can be used for multiple purposes. It is 
intended to directly assist DoD installation personnel to design field studies that 
examine possible impacts of S/O on T&E species and to perform related 
statistical analyses that are within the scope of personnel time commitments and 
expertise. If more extensive studies are required or the outcome is of great 
consequence (e.g., military activities subject to severe restrictions by regulators), 
it is recommended that either a professional statistician be consulted or the 
study be performed by a contractor with the required expertise. If DoD 
personnel prepare a Statement of Work (SOW) for work to be performed by a 
contractor, the information provided in this report can assist in the following 
ways: (1) information for preparation of statements of requirements included in 
the SOW, (2) source of guidelines to the contractor regarding how the work is to 
be performed, and (3) considerations for monitoring contract work. 

The exact sampling design and statistical analysis used in a particular situation 
depends on the specific questions to be addressed. Because extensive field 
studies (including sampling to realistically measure concentration and duration 
of exposure) to assess smoke impacts are so complex, consultation with a 
professional statistician or biometrician prior to conducting the field study is 
highly recommended. Such an expert can review a study design for statistical 
validity or recommend appropriate sampling design and statistical procedures 
for a specific study related to the species that occurs at the specific location 
under the training/testing scenarios identified by the DoD manager. The 
problem is not just one of design and analysis, but also of a complex set of 
logistical and field methods required to actually conduct a realistic study. S/O 
samples must be related to sampled elements of flora and/or fauna. In other 
words, biological, ecological, and military training-relevant scenarios, must be 
tied together in a scientific and experimental context. Sampling methods 
appropriate for S/O and T&E species are recommended in Volume 2 of this 
report series (Sample et al. 1997). 

Mode of Technology Transfer 

The report will be posted to the World Wide Web, making it accessible to 
installations where S/O and riot-control agents are used and where threatened, 
endangered, or candidate species are known to occur or may be present. Military 
organizations particularly concerned with S/O and riot-control agents will be 
notified when the report is available. 



™ ERDC/CERL TR-01 -59 

2  Sampling Design Considerations 

Introduction 

The scientific approach to evaluating S/O effects on T&E species must be based 
on a rigorous statistical foundation that results in logical planning, design, 
execution, analysis, interpretation, and presentation of results.   Green (1979) 
describes this sequence as:   purpose --> question --> hypothesis --> sampling 
design -> (experimental execution) --> statistical analysis -> tests of hypothesis 
-> interpretation and presentation of results. "Experimental execution" was the 
terminology proposed by Hurlburt (1984).   The generalized scheme of a logical 
research program in Underwood (1997, Figure 2.1) consisted of: observations of 
patterns in space or time, models of theories or explanations, hypotheses and 
predictions based on models, null hypothesis as the logical opposite to the 
hypothesis of interest, experiment as the critical test of the null hypothesis, and 
interpretation of results.  Underwood strongly insists, however, that this is not 
the end of the research.   It is important to further probe the model — both in 
more generalized and in more specific contexts — with more rigorous testing. 
This continued research is the recipe for scientific progress and the challenge to 
established paradigms (Kuhn 1970). Although budget constraints limit sampling 
scales and replications, it is also important to revisit or extend experimental 
sites  and  repeat  critical  experiments  (Connell  and  Sousa   1983).     These 
approaches work well when inferential statistics (see glossary) and hypothesis 
tests  are  appropriate.     Some  research  and  issues  in the  ecological  and 
environmental sciences, however, cannot be resolved with the classical inference 
approach. Despite the cautions of statisticians, since Berkson's (1942) insightful 
paper on the use and misapplication of significance tests and hypothesis testing, 
practitioners of environmental analyses routinely use significance tests as 
dogma (reviewed in Krzysik 1998a).   Also, nonparametric tests are routinely 
applied to unbalanced, small sample, noisy, heterogeneous, highly skewed, or 
carelessly collected, "messy" data sets, in the mistaken belief that these tests are 
robust or independent of statistical assumptions, inadequate sampling, or poor 
research  design (Krzysik  1998a)  (see  nonparametric section for expanded 
discussion and references). 

Statistical analysis of environmental data is challenging for a number of impor- 
tant reasons:   (1) acquiring adequate sample sizes and replicates, (2) sampling 
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independence in replicates and treatments, (3) unbiased sampling, and (4) pa- 
rametric assumptions of the data. It is important to consider parametric as- 
sumptions of the data: normality - the data are distributed as a normal or 
Gaussian "bell-shaped" distribution; homoscedasticity - similar variances ex- 
ist among all comparison groups; independence of sampling errors; homoge- 
neity of experimental units - areas or populations sampled have similar charac- 
teristics; and additivity of error effects for treatments - each treatment affects 
only the experimental unit to which it is applied, allowing for the detection of 
true differences between treatments. Lack of true independence in treatment 
replications (the classical approach) presents the most formidable and hardest to 
overcome problem for environmental field studies (Hurlburt 1984; Underwood 
1997). Importantly, in the case of military S/O research, careful controls on the 
amount, location, and timing of smoke releases would be necessary for validating 
the significance among treatments. This represents a significant challenge in 
coordination with military activities for research designs under actual field con- 
ditions. These constraints can present considerable obstacles in a researcher's 
attempts to characterize S/O effects on T&E species populations and habitat. 
Eberhardt and Thomas (1991) summarized the challenges faced by ecologists in 
characterizing natural resources: 

Unfortunately, natural systems appear to be very "noisy" in the sense of 
stochastic (chance) fluctuations, and environmental research techniques 
are subject to substantial "measurement errors," i.e., they rarely measure 
anything exactly and consistently. In such circumstances it seems 
desirable to adhere to the more flexible viewpoint ... in which a long 
series of successive studies each yield a "decision" (based on statistical 
tests), but a "conclusion" (a scientific law, perhaps), ultimately depends 
on a reassessment of this whole series of individual results. Such an 
outcome is generally unattainable under the rules of strict logic ... 

In circumstances where controlled experiments utilizing inferential statistics 
(see glossary) cannot be used, observational studies using descriptive statistics 
(see glossary) may provide ecologically meaningful answers to questions about 
S/O effects. Most progress in ecological and environmental research has been 
made by combining the experience and observations of the researcher with 
controlled experimentation (Eberhardt and Thomas 1991). 

An introductory summary to research and experimental design, common pitfalls 
and problems with experimental designs and statistical analysis, and guidelines 
for designing ecological or environmental monitoring programs can be found in 
Krzysik (1998a, 1999). For natural resources and land managers not familiar 
with statistics and data analysis, a number of excellent introductory books are 
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available (Kachigan 1986; Campbell 1989; Motulsky 1995; and Zolman 1993). 
Basic fundamental statistical analysis textbooks that are found in the classroom 
and in the libraries of working field biologists are: Steel and Torrie (1980), 
Snedecor and Cochran (1989), Sokal and Rohlf (1995), and Zar (1999). Readers 
of this report may find Appendices A through C useful for symbols, terms, and 
acronyms used herein. 

Purpose: Classification of Field Research — Mensurative and 
Manipulative Studies 

Introduction 

The experimental designs of environmental studies can be broadly classified as 
mensurative or manipulative (Hurlburt 1984). Mensurative studies involve 
simple observation or measurement of intrinsic ecological phenomena. The 
researcher makes no attempt to manipulate or influence events (i.e., apply a 
treatment) during the course of the study; instead, time or space are used as 
treatment variables, and inherent properties of the populations or systems are 
the features of interest. Manipulative studies, typically using the experimental 
designs of researchers, are characterized by the application of different 
treatments to different experimental units (e.g., releasing specific amounts of 
white phosphorus [WP] smoke into different areas and evaluating the effects). 
Both inferential and descriptive analysis techniques can be used with 
mensurative and manipulative studies. 

Eberhardt (1976), Hurlburt (1984), Eberhardt and Thomas (1991), and 
Underwood (1991, 1992, 1994) reviewed the issues of mensurative and 
manipulative studies and pseudoreplication, bringing renewed attention to the 
difficulties of achieving true replication in ecological experiments and 
environmental field settings. The problems encountered in meeting the 
assumptions and challenges of experimental design principles have been 
recognized for some time by researchers outside of laboratory settings, and 
environmental and social experimental designs have been referred to as "quasi- 
experimental designs" (see discussion and references in Krzysik 1998a). 
Milliken and Johnson (1989) provide a discussion and practical guidance for the 
analysis of unreplicated experiments. 

To clarify the purpose of a research effort, several items should be considered 
(Taylor 1990). These items are the desired outcome of the investigation, the 
population of concern, the parameters of interest, the facts already known about 
the situation, assumptions needed to initiate the investigation, the basic nature 
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of the problem, and temporal and spatial aspects of the problem. See Appendix 
D for a checklist of recommended background information for use in chemical 
impact studies. 

Desired Outcome of the Investigation 

The researcher should be able to describe the information he/she needs to obtain 
or what he/she wishes to demonstrate as a study result. To describe the desired 
final outcome, the researcher needs to define the specific problem or issue to be 
resolved and the criteria that will be used to determine if the research goals have 
been met. Examples of outcomes are (1) to record changes in a population over 
time, (2) to compare two or more populations with each other, and (3) to 
document compliance with state or Federal regulations. 

Population of Concern 

The ecological definition of a population is different from the statistical 
definition. Ecological populations are spatially, temporally, and genetically 
coherent groups of plants or animals of a given species or subspecies. In other 
words, they constitute a group of individuals that are characterized as freely 
interbreeding, and they are, in theory and under natural conditions, 
reproductively or spatially separated from other populations (Sutton and 
Harmon 1973). Statistically, a population is the set of numbers that describe all 
possible events in a defined universe. If, for example, the defined universe is the 
liver-tissue concentration of hexachloroethane (HC) compounds in golden- 
cheeked warblers (Dendroica chrysoparia) on a given installation, then the 
corresponding statistical population of concern is the set of all possible numbers 
that could describe this concentration. This set of numbers is bounded, 
continuous, and infinite (e.g., HC concentration may equal 0.005, 70.89, 116.6, 
500, or 999.999999 mg per gram of liver tissue, etc.), in contrast to the ecological 
population of warblers, which is bounded, discrete, and finite (e.g., 220 warblers). 
A convenient distinction between the two types of populations is that a statistical 
population is composed of numerical values (but may also correspond to the real 
population through a frame of reference), while an ecological population is 
composed of biological entities. Both the ecological and statistical populations of 
concern should be identified prior to the initiation of the study. 

Parameters of Interest 

A parameter is a fixed numerical quantity that describes a characteristic of a 
population (Iman and Conover 1983). Parameters are constants that define loca- 
tion and moments of statistical populations (Winer, Brown, and Michels 1991). 
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The most useful location parameter is the arithmetic mean, but other examples 
are geometric mean, median, and mode. Moment parameters define the fre- 
quency distribution of the statistical population, and include standard deviation, 
standard error, variance, skewness, and kurtosis. Parameters are denoted by 
lower-case Greek characters such as u, o, or p. In practice, it is rarely possible to 
measure all individuals in a population, so subsets of the population (samples) 
are measured. Unlike population parameters, which are constant, numbers used 
to summarize sample data are variables that change with every sample taken. 
The numbers that characterize sample data are called statistics, variables, or 
sample estimators for the population, and are denoted by lower-case English let- 
ters (e.g., x, s, r), or by Greek letters with "hats" or carets (e.g., ft,a, p). There- 
fore, "statistics" fundamentally represents the study of the numbers that charac- 
terize sample data and how effectively they describe the larger population of 
interest. For more details, consult a basic textbook in statistics (e.g., Zar 1999). 

When conducting cause-effect environmental studies, the researcher should use 
a consistent and logical process to select parameters of concern based on the 
objectives and goals of the study. Ideally, it is important to identify parameters 
that (1) provide the most information, (2) can distinguish between anthropogenic 
impacts and natural environmental variability, (3) are reliable and sensitive 
indicators of change, (4) are the most cost-effective to measure, and (5) possess 
additional important interests or merits (Green 1979; Landis et al. 1994 [specific 
for risk assessment]). Usually, the researcher must choose among these criteria 
to optimize some desired attributes at the expense of others. Statistical methods 
such as linear regression or discriminant analysis could be performed on 
preliminary data sets to possibly identify diagnostic variables that may be able 
to distinguish between natural and anthropogenic effects. Identification of 
diagnostic variables by inspection of graphed data is another technique that 
could be used. 

Facts Already Known About the Situation or Problem 

Basic information about the problem should be collected in a systematic manner 
and evaluated. Such information may include: 
1. listings of potential and field-verified T&E species populations on the installation 
2. maps of T&E species habitat 
3. locations of T&E species sightings or maps of population distributions 
4. identification of critical habitat needs for T&E species (e.g., habitat extent, 

successional stage, fcod/water/nesting/shelter resources) 
5. life history of T&E species 
6. past and current T&E species population trends 



ERDC/CERLTR-01-59 15 

7. ranking of research priorities based on military activities most restricted by T&E 
species, T&E species population trends, future anticipated use of the area, etc. 

8. timing, frequency, intensity, duration, and location of military exercises using 

S/O 
9. delineation of areas where T&E species and training activities coincide 
10. types and quantities of S/O released 
11. prevailing weather conditions, wind direction, topography, S/O dispersion 

patterns 
12. known physiological or behavioral changes caused by exposure to S/O (e.g., 

bioassay results) 
13. types of nonmilitary chemicals released on or near the installation (e.g., 

herbicides, insecticides, fungicides, fertilizers, output from manufacturing plants) 
14. land use and ecological history of the area where S/O exercises occur 
15. the nature of any regulatory constraints on military activities 
16. labor and financial resources available to address the issues. 

The nature, amount, and quality of preliminary information available for 
evaluation directly affects the decisions made with regard to the type of study to 
conduct. Information may be obtained from personal observation of the situation 
that needs to be addressed, research results for similar studies, literature 
reviews, or expert consultation. Conducting a pilot study is a very valuable way 
to collect some preliminary data that may reveal new aspects or problems that 
were not previously identified. Talking to resource managers who deal with 
some aspect of these issues on a regular basis may provide additional insight 
from a different viewpoint. Of particular value would be communication with 
other state and Federal land management agencies (e.g., National Park Service, 
Bureau of Land Management, Forest Service), but also regulatory agencies (e.g., 
U.S. Fish and Wildlife Service, Federal and state environmental protection 
agencies), research organizations, and universities that may also provide 
information to help clearly define the purpose of the study. 

Assumptions Needed To Initiate the Investigation 

Once initial information has been collected, the researcher should identify and 
describe any assumptions or constraints that affect the study. Such assumptions 
are not necessarily easy to formulate and require careful thought. Statistical 
assumptions which should be delineated include the distribution of the data, the 
presence or absence of spatial, temporal, or other patterns in the data, the esti- 
mated effects of military or nonmilitary activities that might affect data inter- 
pretation, and limitations of the sampling design and methods. Ecological as- 
sumptions include an initial estimate of the nature and extent of the problem to 
be studied, the species and specific populations likely to be affected by S/O, and 
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the informed estimates needed to initially replace knowledge gaps about the spe- 
cies/populations and S/O under investigation. 

Basic Nature of the Problem: Research, Inventory, Monitoring, or 
Conformance 

Research studies typically have a very narrow focus and attempt to answer one 
or a few highly specific questions. Replication of experimental units may be 
required to achieve an estimate of experimental error, and sample sizes that are 
adequate to achieve desired power or precision may be needed. Single inventory 
or assessment studies provide a "snapshot" of population status or 
characteristics. Monitoring studies are conducted to evaluate the nature and 
extent of changes in the population over a period of time or how populations vary 
spatially with time. Conformance studies, which are conducted to demonstrate 
an installation's compliance with environmental regulations, may incorporate 
elements of research, inventory, or monitoring studies, but their main purpose is 
to show that specific legal requirements are being addressed. 

Temporal Nature of the Problem: One-time, Short-range, or Long-range 

Different aspects of the research problem being evaluated may span several 
different time scales. For example, the physical presence of a single S/O release 
in an ecosystem may last for minutes, but the long-term effects of repeated S/O 
releases in the system may require decades to detect. Ecological time scales may 
encompass a single life stage (e.g., larval stage), the lifetime of an organism, or 
long-term succession of a plant community (U.S. Environmental Protection 
Agency [EPA] 1992). Each type of problem requires a different approach with 
respect to the number of times samples will be taken and the time intervals 
between sampling efforts. Complex research efforts and sampling designs may 
require the coordination of data collection across a range of temporal scales. 

Spatial Nature of the Problem: Local, Regional, or Global 

The area affected by S/O releases may range from highly localized sites for 
smoke grenades, to hundreds of hectares when large-scale military maneuvers 
are conducted. Smokes also disperse and become a component of the global 
atmosphere. Some areas may be limited in size or have unique features that are 
not found elsewhere. Replication may not be possible in such areas. The 
distribution of T&E species populations and their habitats across a landscape 
also directly determines the nature of the sampling process. 
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Question: Definition of Objectives 

The previous section discussed considerations for field studies of T&E species 
and S/O in general. For a specific study, the objectives of the field study should 
be clearly defined in advance. The objectives should be focused and specific, 
quantifiable, verifiable, and relevant to the needs of the particular installation. 
Each variable selected for measurement should directly contribute to achieving 
the objectives. Korte, Klein, and Sheehan (1985) identified three aspects of 
recognizing and predicting environmental hazards: (1) the detection, 
quantification, and prediction of the environmental behavior of chemicals, (2) the 
diagnosis of toxic effects and the estimation of their magnitude, and (3) the 
estimation of exposure. Another important consideration is relevance to 
structure, function, or processes of ecological elements. Examples of general 
objectives and more specific applications that can be tailored to meet individual 
research requirements are given in the numbered list following this paragraph. 
Comparisons across time (objective 4) and location (objective 6) can be included 
as part of the objectives. Objectives 1 and 2 focus on the presence or absence of 
chemical effects on T&E species populations or habitats, objectives 3 and 4 focus 
on the magnitude and duration of these chemical effects, and objectives 5 
through 8 focus on the concentration levels of chemicals in biotic or abiotic 
systems without making predictions about their biological effects. Objectives 7 
and 8 are different because chemicals that do not bioaccumulate would not 
necessarily be present in body tissues or organs, but may still have an effect on 
an organism. Objective 9 goes beyond simple direct effects to consider combined 
effects, either simultaneously (interactions) or over time. Note: the examples 
given are realistic examples, but do not represent current or proposed research. 
1. To determine if smoke usage results in adverse biological effects for T&E species. 

(Note: In most cases T&E species surrogates would be used to make the 
determinations.) Primary biological effects include: survivorship, reproduction, 
physiological changes, and behavioral abnormalities. 
Examples: 

a. To determine if HC smoke exposure results in decreased photosynthesis 
for the hooded pitcher plant (Sarrencenia minor). 

b. To determine if fog oil exposure results in decreased hatchability for eggs 
of red-cockaded woodpeckers (Picoides borealis). 

2. To determine if T&E species habitats and environments are adversely affected by 
military smokes. 
Examples: 

a.   To determine if food sources (prey base) for the Mexican wolf (Canis lupus 
baileyi) are declining as a result of exposure to WP smoke. 
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b.   To determine if the oxygen content of streams inhabited by bluestripe 
shiners (Cyprinella callitaenia) is declining as a result of contamination 
by fog oil. 

3. To determine type, magnitude, and duration of S/O effects on T&E species (using 
surrogate species). 
Examples: 

a. To determine number, size, and distribution of pulmonary lesions caused 
by graphite flake inhalation for St. Andrew's beach mouse (Peromyscus 
polionotus peninsularis). 

b. To determine the level of foliar injury in relict trillium (Trillium 
reliquum) caused by root uptake of nickel-coated graphite. 

4. To determine changes in T&E species populations over time as a result of smoke 
effects. 
Examples: 

a. To determine the rate of change in anhinga (Anhinga anhinga) 
populations as a result of exposure to WP. 

b. To determine the rate of change in Indiana bat (Myotis sodalis) 
populations as a result of exposure to HC smoke. 

5. To determine the chemical concentration levels of S/O for soil and water 
environmental compartments. 
Examples: 

a. To determine the total soil chemical load for all smokes released in the 
S/O training area. 

b. To determine water transport and storage in sediments, and compare 
lentic (standing waters) and lotic (running waters) environments. 

c. To determine the amount of WP in the aquatic sediments of a wetland 
area. 

6. To compare the accumulation patterns of chemicals with respect to different 
atmospheric transport processes, topographic features, or ecosystem structures. 
Examples: 

a. To compare accumulation patterns of fog oil along riparian zones (on or 
near bodies of water, esp. rivers) with patterns in nonriparian areas. 

b. To compare accumulation patterns of red phosphorus in trees with 
accumulation patterns in lichen. 

7. To correlate levels of ambient or environmental contamination with levels of 
tissue and organ bioaccumulation (i.e., total body chemical burden) for S/O in 
selected plant and animal species. 
Examples: 

a. To correlate soil concentrations of HC with HC concentrations in 
Southern milkweed (Asclepias viridula) vascular tissue. 

b. To correlate ambient concentrations of fog oil with fog oil concentrations 
in golden-cheeked warbler (Dendroica chrysoparia) livers. 
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8. To correlate levels of ambient or environmental smoke exposure with actual 
dosage intakes of chemical by inhalation, ingestion, absorption, adsorption, or 
other mechanisms. 
Examples: 

a. To correlate ambient WP concentrations with blood WP concentrations of 
Cumberland pocket gophers (Geomys cumberlandis). 

b. To correlate aquatic HC concentrations with dermal HC absorption by 
shortnose sturgeon (Acipenser brevirostrum). 

9. To address cumulative effects and interactions such as additive effects, but may 
also include synergistic (more than additive) and antagonistic Gess than additive) 
effects. 
Examples: 

a. To compare the level of foliar injury in relict trillium (T. reliquum) 
caused by root uptake of nickel-coated graphite in an area where there 
has been limited release of the nickel-coated graphite to the level of 
injury in an area that has been subjected to repeated releases. 

b. To compare the rate of change in anhinga (A. anhinga) populations as 
a result of exposure to HC smoke with the rate of change as a result of 
exposure to both HC smoke and fog oil smoke. 

Hypothesis: Selection of Correct Conceptual, Estimation, and 
Predictive Models for Smoke Effects on T&E Species 

Definition 

Broadly speaking, a hypothesis is a statement of an assumed condition that can 
be confirmed or refuted by additional testing or observation. Technically, hy- 
potheses can only be rejected; they cannot be proven. The only other alternative 
is failing to reject a posed hypothesis. Restating the research objective as a hy- 
pothesis will more narrowly define the exact scope and thrust of the research ef- 
fort so that studies can be focused on obtaining the specific information needed 
to answer the questions of interest. Either a qualitative or quantitative state- 
ment of the expected relationships to be investigated may be used as a hypothe- 
sis. If inferential analysis is desired, the objective needs to be restated in a 
manner that can be confirmed or refuted with a known level of confidence by us- 
ing null and alternative hypotheses. The null hypothesis (HB) is a formal state- 
ment or conjecture to be tested. It is often worded in a way to indicate that no 
change has occurred or no difference exists (Iman and Conover 1983). The alter- 
native hypothesis (ffA) is a statement that indicates the condition expected to be 
true if the null hypothesis is rejected. Inferential statistical procedures require 
the a priori assignment of rejection criteria for the null hypothesis (see section 



20 .  ERDC/CERLTR-01-59 

on Data Quality below).   Examples of restating an objective as hypotheses for 

descriptive and inferential analyses are given below. 

Objective:   To determine if HC smoke exposure results in smaller size for the 

Florida willow (Salix florida, or surrogates). 

Qualitative hypotheses: 

(1) The trunk diameter of Florida willow exposed to HC smoke is less than the 

trunk diameter of Florida willow not exposed to HC smoke. 

(2) The biomass of Florida willow exposed to HC smoke is less than the biomass 

of mature Florida willow not exposed to HC smoke. 

Quantitative hypotheses: 

(1) The trunk diameter of Florida willow exposed to HC smoke is less than 12 

cm. (The researcher already knows from previous studies of the literature 

that the average trunk diameter for Florida willow in unaffected areas is 12 
cm.) 

(2) The biomass of Florida willow exposed to HC smoke is 60 kg/ha less than the 

biomass of Florida willow not exposed to HC smoke. 

(3) The canopy spread of Florida willow exposed to HC smoke is 20 percent less 

than the canopy spread of Florida willow not exposed to HC smoke. 

Null (if0) and alternative (HA) hypotheses: 

(1) H0: The trunk diameter of Florida willows exposed to HC smoke is greater 

than or equal to 12 cm. 

HA:   The trunk diameters of Florida willow exposed to HC smoke are less 
than 12 cm. 

(2) H0: The canopy spread of Florida willow exposed to HC smoke is equal to the 

canopy spread of Florida willow not exposed to HC smoke. 

HK: The canopy spread of Florida willow exposed to HC smoke is not equal to 

the canopy spread of Florida willow not exposed to HC smoke. 
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For long-term or complex ecological research projects, developing and testing 
conceptual, estimation, and predictive models may be necessary to formulate 
multiple hypotheses and to determine their relative importance in the context of 
the larger study. Models can also be used to clarify uncertainties in 
relationships between ecological and chemical entities and to demonstrate 
possible interactions among various elements in the system. 

Conceptual Models 

Conceptual models show relationships between chemical compounds and T&E 
species populations or habitats. They provide the basis for identifying likely 
interactions between military S/O concentrations in the air or ecosystem and 
behavioral or physiological changes in T&E species as a result of exposure. More 
extensive discussion of conceptual models and the current state of the art can be 
found in U.S. EPA (1998) and Suter (1999). Since the correct selection of 
conceptual models leads to the selection of appropriate variables and hypothesis 
tests for statistical models, extensive knowledge of the smoke usage/distribution 
on the installation and physiological responses and population dynamics for the 
T&E species populations of interest are necessary. 

Both chemical behavior in the environment and organism responses should be 
included in the formulation of conceptual models. Chemical considerations 
include fate and transport mechanisms, which can be evaluated by modeling or 
estimating (1) ambient chemical concentrations under different training 
scenarios, (2) transformation/decomposition products under selected atmospheric 
and environmental conditions, (3) deposition and leaching rates in specific 
ecosystems or strata (e.g., midgrass prairie vs. oak/juniper woodland; understory 
vs. overstory strata), (4) rates of chemical accumulation or decomposition in soil 
and water compartments of the ecosystem, and (5) relationships between 
environmental exposure and actual dosage rates. Environmental considerations 
for conceptual modeling are (1) adsorption or absorption and ingestion/inhalation 
pathways for terrestrial and aquatic plants and animals, (2) trophic 
bioconcentration for target compounds and organisms, (3) transformation, 
decomposition, and excretory pathways for chemicals in living systems, and (4) 
predicted physiological and behavioral responses of T&E species to known 
chemical dosages. Estimates for missing information in conceptual models may 
come from studies on related compounds in technical literature, personal 
experience, or expert opinion. See Appendix D for a checklist of recommended 
background information for use in chemical impact studies. 
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Estimation Models 

Estimation models are sets of mathematical equations that represent the system 
of interest. They are used to identify variables that contribute to explaining 
chemical or biological processes and to provide probability estimates for events 
that affect the system. 

Estimation models can be deterministic or stochastic. Deterministic models 
assume that conditions in the equations remain fixed and constant (i.e., no 
statistical or environmental uncertainty is included in the model), and may be 
used to describe parameters associated with basic environmental/T&E species 
states and processes, such as age structure, population size and growth, 
reproduction rates, and environmental conditions. For example, population 
growth over time may be calculated with a deterministic model by using a 
constant growth rate factor multiplied by the population size at a given time. 
Stochastic models are used to introduce random fluctuations in the system. A 
population growth model that incorporates stochasticity may use the basic 
deterministic model modified by the inclusion of probabilities for chance events 
such as famine, drought, predation, or chemical impacts. 

When building estimation models for determining effects of S/O on T&E species 
populations or habitat, the researcher should consider both factors that affect 
short-term population fluctuations (i.e., variability) and factors that affect long- 
term abundances (i.e., means). For example, a T&E species population that 
experiences a drastic decline in one year may not be able to recover, even if the 
mean population size appears to be increasing on the basis of long-term trends. 
On the other hand, a comparatively stable population with minor fluctuations in 
size may not survive if it is experiencing a gradual, but persistent, long-term 
population decline (Burgman, Ferson, and Akcakaya 1993). Information gained 
from estimation models can be used in population viability models or risk 
assessment models to allow natural resource managers to determine the 
probabilities of having unacceptable conditions (e.g., T&E species population 
levels below a critical recovery point) or for identifying the likelihood of 
occurrence for worst-case scenarios given different mixes of environmental 
conditions and military activities. Selection of appropriate estimation models 
requires the identification of variables to be evaluated and their relationships to 
each other, assignment of probabilities to random events, and selection of 
appropriate statistical tests to measure effects. 
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Predictive Models 

Estimation models are used to test inferences within the temporal and spatial 
boundaries of the data collected. As the models are tested with data collected 
from the field, some variables may be found to have important effects on the 
system of interest, while others may have little or no effect. As more data are 
gathered, the estimation models can be refined into predictive models, which are 
used to characterize system behavior beyond the range of the data (Zar 1999). 
Development and interpretation of S/O predictive models should be done with 
caution, because S/O behavior is so variable and in many cases it may be very 
difficult or impossible to extrapolate extended effects in time or space from 
available data. Predictive models are more likely to be successful when the 
researcher can control sources of natural variability and sampling error. For 
example, models that forecast atmospheric dispersion of S/O may be more 
difficult to validate than models that predict S/O effects on soil microorganisms, 
because of differences between the two types of studies with respect to sampling 
ease, repeatability, availability of monitoring equipment, timing and logistical 
constraints, inherent system variability, and other considerations. 

Sampling Design: Development of Appropriate Strategies for Allocating 
Treatments and Collecting Samples 

The experimental or sampling design, in simplest terminology, is the set of plans 
and instructions by which the data are collected and specific statistical design 
protocols are met (Green 1979; Iman and Conover 1983; Underwood 1997). The 
experimental design can be mensurative or manipulative. The difference 
between the two terms relates to whether the researcher will intervene (or apply 
treatments) in the study, or whether he will simply observe events as they 
happen without attempting to control or manipulate them. Developing a good 
experimental or sampling design requires the determination of the true 
population to be sampled; selection of appropriate variables to measure, 
experimental units, and sampling units; awareness of special considerations for 
sampling biotic and abiotic media; identification of confounding factors; and scale 
considerations. Criteria such as replication and independence must be applied 
(Hurlburt 1984). If the experiment is a manipulative experiment, the kind and 
number of treatments to be applied should also be specified, and the details of 
assigning treatments to experimental units explained. 
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Determination of True Population To Be Sampled 

In statistical terms, a population is the set of all possible values of a variable 
(Steel and Torrie 1980). When every value of a population is known, then the 
population is completely defined. A statistical population can be large or small, 
finite or infinite, and can consist of discrete or continuous numbers. An example 
of an infinite population consisting of continuous numbers would be all possible 
values for the chemical concentration of fog oil taken at a height of 10 m and a 
distance of 50 m from an M3A4 generator after the generator has been running 
for 60 minutes. An example of a small statistical population consisting of 
discrete numbers would be the number of young successfully raised by a specific 
pair of red-cockaded woodpeckers (P. borealis) during a 5-year period. In risk 
assessment analysis, the assessment or measurement endpoints constitute the 
statistical population to be sampled. The correct descriptions of the statistical 
and ecological populations to be tested are important in detennining the 
statistical analysis procedures that will be relevant for the study and the 
extrapolation of the results to a larger context. 

Two common mistakes that researchers make when defining the population of 
interest are (1) inadequate or incorrect definition of the population of interest, 
and (2) defining one population but sampling a different population or a 
subpopulation (Green 1979). For example, a researcher may define the 
statistical population of interest as the ground deposition levels for WP on two 
training areas of an installation. Such a definition does not take into account 
factors such as accumulation of phosphorus over time, transformation of WP into 
other compounds, or the chemical instability of phosphorus compounds under 
various temperature and humidity regimes. Since phosphorus levels exhibit 
temporal variability, a better definition of the population would include a 
restricted time frame and season. 

It is also important to adequately define the ecological population to be sampled. 
An ecological population is a group of genetically compatible individuals with the 
spatial and temporal potential for reproduction (i.e., a gene pool). Sampling the 
wrong ecological population can occur when incorrect assumptions are made con- 
cerning population distribution and density parameters, home range, or disper- 
sal behavior and parameters. Sampling can also be inadequate or biased. Often, 
some field sampling strategies may collect only a biased subpopulation of the in- 
tended target population (Green 1979). Common causes of subpopulation bias 
include capturing slower, older, or diseased individuals; larger individuals that 
are more easily seen or susceptible to being caught in a wider range of net mesh 
sizes; or brightly colored or strikingly patterned individuals that are more visi- 
ble.   Other causes are behavioral differences in age or gender classes and the 
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phenomenon of "trap-happy" or "trap-shy" species or individuals. Trapping ro- 
dents during the breeding season may capture a disproportionate number of 
males, because the females spend more time in the nest with their young. Simi- 
larly, females in many species of lizards and salamanders may be clutching eggs 
in subterranean microhabitats. Devices used to capture aquatic species in a lake 
may collect only slow-moving fish or fish that congregate at a particular depth, 
which may not be representative of the lake population as a whole. Researchers 
should be aware of the limitations of their sampling devices and methods in or- 
der not to extrapolate data beyond justifiable limits. Borgman and Quimby 
(1988) defined three populations that must be considered when developing sam- 
pling plans: (1) the target population, (2) the accessible population, and (3) the 
actually sampled population. The study should be designed so that the popula- 
tion actually sampled is representative of the target population. This considera- 
tion is especially important if tracer compounds are used to mimic S/O behavior 
or if surrogate species are used to estimate the effects of S/O on T&E species 
populations (see Interpretation and Presentation of Results in Chapter 3). 

Special Considerations for Sampling Abiotic and Biotic Media 

Obtaining samples that adequately characterize the actual condition of a system 
is a formidable task. Variability in the samples, in the size and distribution of 
the sampled population, and in the sampling and analytical methods all 
contribute to the uncertainty of the final results. In fact, accurate quantification 
of the uncertainties associated with sample selection may not be possible. In 
such instances, the researcher needs to take special care to report qualitative 
descriptions of the factors that affect sampling accuracy, and any underlying 
assumptions in the sampling design that affect interpretation of results. 

Air. 

Military S/O usually consist of exotic materials and properties not found in in- 
dustrial and agricultural air pollutants. Because of these differences, conven- 
tional pollution dispersion models, sampling and analytical methods, and field 
research techniques may not always be applicable, and new or re-parameterized 
models and methods need to be developed (Liljegren et al. 1989; Policastro et al. 
1991). S/O that contain irregularly shaped flakes or fibers have dispersion char- 
acteristics very different from the spherical particles commonly found in indus- 
trial pollutants (Bowers and White 1992). The release modes for military S/O 
also differ from standard industrial and agricultural practices. Industrial re- 
leases into air are usually from tall stacks at a single location, but may travel 
several miles. Agricultural releases into air from aircraft or ground-based 
equipment typically are spread over several to many hectares. Military smokes 



2?  ERDC/CERLTR-01-59 

are released at or near ground level over a relatively small area, but may rise 
and disperse in a plume for a few kilometers or, in the case of a signal smoke, for 
example, may remain in a comparatively small area (e.g., a fraction of square 
kilometer). Some S/O materials (e.g., WP) are fired by artillery. Models devel- 
oped specifically to deal with military smokes have been extensively researched 
at Dugway Proving Ground, a U.S. Army Test and Evaluation Command (ATEC) 
test center for smokes and obscurants (Bowers and White 1992). Such models 
should be used when possible to predict military smoke behavior instead of stan- 
dard EPA regulatory models. 

Studies by Farmer and Davis (1986), Liljegren et al. (1988), and Haines (1993a, 
1993b) have indicated that ambient S/O concentrations more than 100 m from 
stationary release points may be too low for sampling instruments to register. 
Even samples taken within the 100-m boundary may not be distinguishable from 
background concentrations of the chemicals of interest. In addition, samples 
taken within the 100-m boundary may be unreliable because of atmospheric 
disturbances (especially sudden shifts in wind direction), cross-contamination, 
loss of volatile sample material, or logistical problems in handling samples. 
Concentrations of S/O released from moving vehicles tend to be even lower than 
those released from stationary points for two reasons: (1) greater initial smoke 
dilution and (2) spread of S/O over a larger area (Bowers and White 1992). 
Preliminary sampling is highly recommended in order to calibrate sampling 
instruments, determine the range of S/O concentration to be detected, and avoid 
wasted sampling efforts. Liljegren et al. (1988) failed to collect any fog oil 
concentration data in 8 out of 11 experiments because their collection devices 
were spaced at 100-m intervals up to 1,600 m, but valid observations for fog oil 
could only be detected within 25 to 75 m of the release site (i.e., the resolution of 
the sampling design grid was too coarse to capture the fog oil released). 

Extremely sensitive instruments with specialized calibration and operation 
requirements are typically necessary to quantify ambient chemical 
concentrations. Air sampling is difficult even with highly trained personnel and 
specialized equipment. Chemical agents may be released as aerosols, volatilized 
liquid droplets, particulate matter, or mixtures; each phase requires different 
sampling instruments and techniques. Keith (1991), Haines (1993b), Liljegren et 
al. (1988), and Farmer and Davis (1986) provide excellent suggestions for 
recommended sampling considerations and sample preservation strategies for 
various chemical mixtures, while Nam et al. (1999) provides information for 
specific smoke, obscurant, and riot-control agent chemicals. 

The behavior of S/O is highly dependent on the weather conditions present dur- 
ing their release.   Therefore, results from one study should not be generalized 
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across broad ranges of weather conditions. Bowers and White (1992) described 
the lifetime of a fog oil droplet as ranging from 0.22 seconds to over 39 years for 
ambient temperatures of 40 °C and -30 °C, respectively. Photoreactivity and the 
presence of other reactive chemicals also affect the length of residency for ob- 
scurant compounds suspended in the air. Wind speed, atmospheric stability, 
humidity, and precipitation play important roles in the mixing and dispersion of 
volatile compounds (Keith 1991; Farmer and Davis 1986). Haines (1993a) sum- 
marized the variability of fog oil, aluminum, brass, phosphorus, and other S/O 
concentrations in ambient air as follows: 

Air is also an extremely variable medium in which concentrations of 
materials can vary naturally by orders of magnitude due to changes in 
the on-site meteorology and localized contamination. Because of this 
variability, air is a recalcitrant sampling medium. Results from air 
sampling at the same location but at different times of the day can differ 
by orders of magnitude due to changes in predominant wind direction 
and on-site activities. Because of air's variability, all but the most severe 
analytical errors will be overwhelmed by errors in extrapolating the data 
from a limited period to a much longer period and from a limited area to 
a much larger area. Therefore, many statistical methods that are used to 
assess data from other sources are not applicable to air data. 

Some laboratory analysis procedures for certain S/O may present special 
difficulties (Haines 1993a). Fog oil concentrations are often measured using the 
Total Recoverable Oil and Grease method (TROG, EPA Method 413.2). This 
technique, although considered one of the best general oil analysis methods 
currently available for assessing fog oil concentration, has several serious 
disadvantages. The method has been found to be unreliable, and vigorous efforts 
to find a better process are being pursued (Haines 1993a). Considerable 
variations in results are possible as a consequence of procedural differences 
allowed by the method; therefore, laboratory protocols must be strictly 
delineated in advance. In addition, since TROG measures total oil, it cannot 
distinguish between obscurant hydrocarbons and other hydrocarbons (e.g., diesel 
fuel or agricultural chemicals). Haines (1993a) also noted that sample weight 
made a difference in the concentration of fog oil recovered. Less fog oil was 
generally retrieved from larger samples in a controlled study (i.e., fog oil 
concentration was diluted in the larger samples). This dilution problem needs to 
be addressed for all time-series S/O studies because, if different sample sizes are 
compared, the results may be invalid. 
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Biota. 

The body size, trophic position, and developmental stage of organisms are all 
important factors on the effects of chemicals, including S/O (Kendall and Lacher 
1994), and all three should be evaluated. These factors are also important 
considerations for sampling body tissues or fluids for S/O concentrations. 
Chemical tissue concentrations may accumulate in organisms, and some 
chemicals even biomagnify in species that are high in the food chain (i.e., top 
predators) (Di Giulio et al. 1995). The potential for accumulation or 
biomagnification varies with S/O material, but should be considered. Also 
possessing a higher potential for biomagnification are larger organisms within a 
given trophic level, as they are usually higher in the food chain as well. 
Organisms in embryonic or early developmental stages may be especially 
sensitive to chemical Stressors because of the high cellular activity and 
metabolism of rapidly differentiating and multiplying cells. The combined 
effects of higher S/O tissue concentration with the more rapid and variable 
growth patterns of young organisms may increase the effects of S/O significantly 
beyond what would be expected for an identical concentration in an adult. 

The developmental instability (D.I.) approach and technologies (Graham, Free- 
man, and Emlen 1993) may be useful for assessing or monitoring the effects of 
S/O on target populations or in ecological communities. The response of organ- 
isms to stress is the basis of environmental adaptation, natural selection, and 
evolutionary potential. D.I. is a powerful and sensitive test system to quantify 
stress response of individual organisms and has been effectively used with a 
broad variety of Stressors including air and water pollution, grazing, heavy met- 
als, organic toxicants, excess nutrients, temperature, etc., in a wide variety of 
terrestrial, fresh-water, and marine ecosystems (reviewed in M0ller and Swaddle 
1997). Animals (Freeman, Graham, and Emlen 1994), plants (Alados et al. 
1998), and algae (Tracy et al. 1995) have all been successfully used for analysis. 
When developing organisms are exposed to Stressors, developmental homeostasis 
is compromised and further growth patterns may become asymmetrical (Free- 
man, Graham, and Emlen 1994). D.I. is usually estimated as the variance in a 
trait repeated within the individual, and involves some aspect of symmetry 
(Graham, Freeman, and Emlen 1993; Freeman, Graham, and Emlen 1994). 
Random deviations from all types of symmetry have been used as indicators of 
stress. Unless there is some predisposition for traits to exhibit a certain hand- 
edness, the two sides should be mirror images of each other (i.e., they should ex- 
hibit bilateral symmetry). The most common measure of D.I. is fluctuating 
asymmetry based upon the absolute value of the difference in the value of a trait 
measured on the right and left sides of the body (Palmer and Strobeck 1986; 
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Graham, Freeman, and Emlen 1993). Fluctuating asymmetry was associated, 
for example, with a fruit fly species as it declined to extinction (Tsubaki 1998). 

Preserving tissue or fluid samples for laboratory analysis requires advance 
planning to ensure that sample integrity is maintained throughout the 
collection, transport, and analysis process. Guidance for samples containing 
selected S/O materials can be found in Nam et al. 1999. Simini (1992) provided 
some excellent suggestions for field sampling protocols to follow when collecting, 
handling, and preserving vegetation for the analysis of chemical warfare agents. 
Such protocols could be adapted to S/O compounds in order to maintain high 
quality samples for analysis. 

Soil. 

Special sampling and handling techniques for soil samples are necessary to avoid 
or minimize: loss of volatile compounds, oxidation-reduction reactions, or 
transformations by microorganisms and other biological activity. The cost of 
collecting additional field samples (once in the field) is sometimes inexpensive 
relative to the cost of getting to the collection site and the cost of laboratory 
analysis. It may be desirable, therefore, to collect supplementary or redundant 
samples. Cross-contamination should be avoided by thoroughly cleaning 
equipment between each sample, and chemical interactions between soil samples 
and sampling devices should be avoided by using samplers constructed of the 
appropriate materials. Keith (1991) recommended stainless steel collection 
devices for soils contaminated with organic compounds, and high-density 
polyethylene devices for soils contaminated with inorganic compounds. 
Sandusky (1992) outlined field sampling protocols to follow when collecting, 
handling, and preserving soils contaminated with chemical agents such as nerve 
gas or other compounds used in chemical warfare. These protocols could be 
modified for the S/O under consideration to maintain soil sample integrity for 
laboratory analysis. 

A common problem with collecting representative soil samples in a time-series 
design is that military activities or burrowing animals may mix contaminated 
and uncontaminated soils within the soil matrix. Leaching as a result of flooding 
events may move some S/O compounds into a lower soil horizon, while 
underground migration of chemicals to or from adjacent areas may create 
unexpected pockets of lower or higher concentrations. Rising and falling water 
tables may also affect contaminant levels. The researcher should study the site 
and soil characteristics of the study area carefully to determine if confounding 
influences may be present. 
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Water. 

Obtaining representative water samples is very difficult because of the spatial 
and temporal heterogeneity of aquatic systems (Keith 1991). An important 
consideration is that biota in lotic (running water) ecosystems may be impacted 
by a single short-term release (spill) or "pulse" of a toxic compound (MacKay, 
Burns, and Rand 1995). Subsequent chemical analysis of water chemistry would 
not reveal the nature of the impact event. Depending on the toxicant, its 
concentration, and length of exposure, benthic (e.g., from a lake bed or river 
bottom) cores may be able to detect its impact. 

The behavior of a chemical compound in water depends on several factors, the 
most important of which are: (1) the solubility of the compound, (2) the 
temperature of the water, (3) the specific gravity of the compound, (4) the nature 
of the aquatic environment (e.g., lotic or lentic systems, marine, brackish, or 
freshwater ecosystems, water chemistry), and (5) the size and depth of the water 
compartment (e.g., ditch, small pond, river, large lake, or ocean). A problem 
commonly encountered with larger bodies of water is that various chemical 
compounds and aquatic species may be stratified at different depths. Thermal 
stratification of water can also complicate the sampling process, as chemicals 
may exhibit different reactivities at different depths depending on water 
temperature and redox (oxidation reduction) potential. Flowing water presents 
special challenges for sampling because mixing within the water column 
introduces high heterogeneity into the sample. 

Keith (1991) recommended that the length of a sampling study for a body of 
water be approximately 10 times longer than the period of interest in order to 
effectively characterize the extent of the heterogeneity present. Keith also 
warned that water sample contamination is a continual problem, which 
increases in importance as analyte concentration levels decrease. Since water 
samples are in a continuously dynamic state, their composition may be 
substantially altered between collection and analysis by chemical, biological, or 
physical processes. As discussed earlier, toxicological analysis of lotic ecosystems 
is difficult to assess. 
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Identification of Confounding Factors 

Confounding factors are influences other than the ones being explicitly studied 
which affect the response of a system. The researcher must consider how to deal 
with confounding factors when designing the study to reduce the probability of 
obtaining spurious results and to demonstrate that only the factors of interest 
contributed to the effects observed. Taylor, Johnson, and Anderson (1994) noted 
that deriving ecologically meaningful trends of pollutant effects over the long 
term may be very elusive. When the intrinsic variability of S/O use and other 
military training impacts are added to the natural variability of ecosystems, 
separation of effects becomes especially difficult. Some of the more common 
confounding factors for general atmospheric pollutant studies are as follows 
(Taylor, Johnson, and Anderson 1994; Winner 1994): 
1. Seasonal and diurnal fluctuations of ambient chemical concentrations due to 

light, temperature, humidity, and wind conditions. 
2. Compensatory growth by organisms to offset damage caused by air pollution. 
3. Multiple natural and anthropogenic Stressors in the environment (e.g., lack of 

water, light, nutrients, or presence of nonsmoke pollutants), including naturally 
occurring organics. 

4. Secondary response mechanisms (e.g., organisms may exhibit compensatory 
growth to counteract air pollution damage, but then outgrow their resource base 
or lower their tolerance to other Stressors as a result). 

5. Differences in individual and species-specific responses to the same level of 
chemical stress. 

6. Interrelationships between spatial distribution patterns, concentration levels, 
and exposure time of chemicals in sensitive ecosystems. 

7. Presence of both positive and negative S/O effects. S/O may enhance growth and 
physiological functions for some organisms. For example, fog oil may provide 
carbon as a food source for certain microorganisms. In turn, the enhanced 
microbial populations may accelerate secondary succession. Phosphorus, 
nitrates, potassium, and iron are major plant nutrients. These elements and 
others that are micronutrients will benefit plant growth, and may coincide with 
negative effects for other organisms (e.g., pellets of phosphorus may be deadly to 
waterfowl when ingested [Racine et al. 1992]). 

8. Indirect effects that reduce competitive ability, nutrient use efficiency, or other 
behavioral or physiological responses. 

9. Organisms, especially at lower trophic levels and over long time spans, may 
adjust to the presence of S/O by physiological, behavioral, or genetic adaptations. 

10. Organisms may not respond to chemical Stressors except at specific times or 
under specific conditions when they are sensitized to the stressor (e.g., during 
gestation, molting, or budbreak; during extended drought; during larval stage). 
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11. S/O may affect reproductive fitness. The effects could be very small and subtle, 
and difficult to measure or quantify. Reproductive fitness is probably the most 
important biological factor to monitor, because of its direct relationship to 
population viability. Even under ideal environmental conditions and 
circumstances, however, reproductive fitness is very difficult to assess and 
monitor. 

Important confounding factors present in military S/O exercises that may need 
to be considered are physical habitat disturbance and noise created by tactical 
vehicles and personnel. Additionally, the use of S/O over a period of years 
presents the potential for environmental accumulation of persistent materials 
(Passivirta 1991). Depending upon the S/O material under investigation, 
persistence may need to be considered. 

Some chemicals (e.g., certain pesticides) are known to persist in the environment 
for as long as several years (Kendall and Lacher 1994; Brown 1978). For S/O, 
persistence resulting in effects may be more likely for some older smoke 
materials such as HC smoke (Shinn, Sharmer, and Novo 1987), which is no 
longer manufactured in the United States, and brass (Wentsel 1986). Graphite 
flakes, a replacement for brass, are persistent in the environment, but few 
effects have been documented (Guelta and Checkai 1995). Some components of 
fog oil, at least prior to the 1986 military specification change (MIL-F-12070C), 
had the potential to accumulate (Bausum and Taylor 1986). Analyses at two 
sites where fog oil had been released for several years, however, failed to identify 
hydrocarbon residues that could be traced specifically to fog oil (Brubaker, 
Rosenblatt, and Snyder 1992; 3D/International Inc. 1996). 

In addition to the persistence of S/O in the environment, cumulative effects 
should also be considered. Cumulative effects may be important (Riha 1988), 
and interactive effects may be as well (e.g., synergisms) (Jernelov, Beijer, and 
Soderlund 1978), but they are likely to be unknown and unappreciated. 

Selection of Appropriate Variables 

Numerous combinations of responses, ecosystem components, and organizational 
levels of ecological populations can be evaluated to assess the effects of S/O on 
T&E species populations and habitats. Relevant examples include: bioaccumu- 
lation or bioconcentration of chemicals in tissues and organs (Landrum, Harkey, 
and Kukkonen 1996), physiological changes in cells or tissues, changes in genetic 
structure, physical or behavioral changes in individual organisms, population 
dynamics of individual species, competitive or mutualistic interactions and 
changes between animal species, successional pathways for plant communities, 
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and basic process changes in ecosystems. Measurable physical properties of S/O 
include: concentration, deposition rates, mass extinction rates, and particle 

sizes. 

Selection of relevant variables by the researcher depends on many important 
factors: ecological relevance, level of sensitivity with respect to the change to be 
detected, ease or difficulty of obtaining representative samples, and contribution 
of each variable to the goals of the study. In addition, if the research is being 
conducted to satisfy environmental compliance requirements, the variables 
selected for evaluation must meet additional criteria with respect to satisfying 
policy goals and societal values (Landis et al. 1994). 

When studies are conducted over periods of months or years, researchers must 
be cognizant that ecosystems are spatially and temporally dynamic. Succession 
and natural disturbance regimes, not to mention inherent environmental 
variability, will always be factors continually and usually unpredictably 
influencing measurement and variance of variables. Design criteria and 
statistical techniques are necessary for accounting for background variability, 
and not some magical or judicious choice of variables. Weather and natural 
disturbance regimes are highly variable, and it is very difficult to separate 
effects of any anthropogenic disturbance (e.g., release of obscurant) from natural 
disturbance. Important examples include fire, flooding, drought, and pest 
outbreaks. 

The selection of variables is directly relevant to study objectives and the nature 
of the ecological elements under investigation. If other factors are equal, 
selection of the variables with the least natural variation is highly desirable. 
Sampling logistics and difficulties should also be evaluated and determined if 
additional variability could be introduced as an artifact of either the sampling 
design or the sample collection method. Methods for measuring variables should 
be objective rather than subjective, because differences and measurement 
perception among observers is a serious source of bias. 

Goldberg and Scheiner (1993) suggested that appropriate parameters to measure 
in ecological experiments, which can include analyses of effects of S/O materials, 

are: 
• for individual-level responses to ecological or anthropomorphic stimuli: 

behavior, morphology, physiology, growth rate, age-dependent survivorship, 
and reproductive output or fitness 

• for population-level responses: population numbers/biomass, and growth 
rates (e.g., relative or absolute density, biomass, cover, frequency, or other 
metrics) 
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•    for community-level responses: taxonomic or functional group composition, 
dominance, and species richness. 

Characteristics of populations and ecosystems that should be considered when 
designing time-dependent studies include changes in the following: (1) age 
distributions of species, (2) relative abundances of species, (3) migratory 
behavior, (4) stress rates, (5) spatial relationships among species, and (6) 
population gene pools (National Research Council [NRC] 1981). The capacity of 
an ecological system to store or detoxify chemicals should also be considered. 
Impacts of chemicals on ecosystems can be detected only if the natural structure 
and function of the system is well-understood (NRC 1981). Species-habitat 
relationships, patterns of change, and fluctuations or oscillations of populations 
are important parameters for impact assessment (Krzysik 1984,1985). 

Selection of Appropriate Experimental Units 

Definition of experimental unit. 

An experimental unit is the smallest subdivision of experimental material (or 
area) that can receive a given treatment. The number of experimental units 
used in a manipulative experiment is a major factor in determining the precision 
for estimates of variability among treatments. Sometimes in research with 
restricted budgets or resources, replicates within treatments are emphasized at 
the expense of using an adequate number of treatment comparisons. Although 
this strategy provides good estimates of within-unit variability, it compromises 
the ability to measure between-unit variability, which after all was the primary 
purpose of the experiment. 

Representativeness. 

The conditions being investigated in a study should be as similar as possible to 
the conditions under which the results will be applied (Cox 1958). The selection 
of experimental units that are representative of the species, material, or area to 
be evaluated is critically important to achieving results that can be applied in a 
real-world setting. Finding representative experimental units in S/O studies 
may be very challenging, because of the variety of conditions under which S/O 
are deployed, and because S/O are very sensitive to changes in external 
conditions, especially weather and terrain. 
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Spatial and temporal autocorrelation. 

In many environmental studies, measurements are spatially or temporally re- 
lated and correlated because experimental units that are close together in space 
and time may be more similar or related to each other than other, more distant 
units. Such a trend in variability is referred to as spatial autocorrelation, and 
measurements between adjacent areas have less variability than measurements 
between distant areas. If two measurements that are close in time have less 
variability than measurements that are farther apart in time, then temporal 
autocorrelation is present. Autocorrelations violate statistical assumptions, 
sometimes very seriously, because the experimental units are not independent of 
each other. Under these conditions, statistical inference may be tenuous or com- 
pletely invalid. 

Stratification. 

If considerable variability exists across the range of a population, partitioning or 
grouping similar segments of the population in a sampling design can lower this 
variability. Such grouping of subpopulations by means of known characteristics 
is called stratification. In some experimental designs this may be an important 
way to increase statistical power and therefore sensitivity of an analysis. 
Examples of stratification occur in avian studies where the birds are classified as 
nestling, juvenile, and adult; or in regional studies where a geographic area is 
classified by elevation, topography, vegetative cover, classified ecosystems or 
plant communities, or some other parameter of interest. When sampling a 
species that occurs in many habitats over large landscapes, but nevertheless 
possesses a degree of habitat selectivity, important strata are habitat types or 
plant communities. Samples are randomly taken from each of the strata, often 
in a proportional manner, rather than being randomly selected from the 
population at large (e.g., if 16 percent of a region is mature upland deciduous 
forest, then 16 percent of the total samples will be taken from this area). 

Replication. 

The term "replication" is used in numerous contexts in statistical and ecological 
literature. In this report, replication refers to the assignment of more than a 
single sample to each treatment in the experimental design (Bender, Douglass, 
and Kramer 1989). For example, if two treatments are randomly assigned to 
eight experimental units, then Treatment 1 may be assigned to four experimen- 
tal units and Treatments may be assigned to four experimental units. This de- 
sign has four-fold replication because there are four sets of the two treatments. 
If Treatment 1 were assigned to three experimental units, however, and Treat- 
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ment 2 assigned to five experimental units, then the design would have only 
three-fold replication because both treatments together, or repetition of the basic 
experiment, occurred only three times across all the experimental units. Repli- 
cation can also be achieved by conducting all treatments together more than once 
(replication in time) or in more than one area (replication in space). 

Replication is important because it increases the precision of an estimate by 
providing an estimation of experimental error, which is used to determine the 
significance of differences between treatment means (Hurlburt 1984; Bender, 
Douglass, and Kramer 1989; Underwood 1997). It is necessary to have a valid 
estimate of experimental error in order to conduct inferential analyses, because 
the error term is used for computing the correct probability for test statistics 
used in hypothesis testing. Replication of treatments is highly desirable because 
it provides a known probabilistic basis for determining true differences between 
treatments. A minimum of two replications is necessary to estimate 
experimental error. In practice, three or more replications allow the researcher 
to evaluate intrinsic differences between experimental units as well. In many 
environmental studies, however, replication may be uneconomic, very difficult, 
or impossible to achieve because of spatial scales or project magnitude, listed or 
rare populations, extreme logistical considerations, or replicates simply do not 
exist (e.g., a specific acidified lake). 

Control sites. 

To determine if S/O is affecting organisms, populations, or ecosystems, it is 
necessary to have an area where S/O have never been used to provide 
information on the natural variability of the experimental units. For example, 
an endangered plant population may naturally experience cyclical fluctuations in 
abundance and distribution. It would not be possible to separate the effects of 
S/O from natural cycles if the normal population patterns were not monitored 
during the same period the S/O study was being conducted. 

Systematic Versus Random Sampling 

Randomization is the assignment of treatments to experimental units in a man- 
ner that ensures that each experimental unit has an equal probability of receiv- 
ing any given treatment. It also refers to the selection of sample sites or objects 
based strictly on random criteria. Randomness is a prerequisite for the estima- 
tion of experimental errors, which is the innate variability in experiments. For 
example, a field with varying levels of fertility may be divided into sections for 
an experiment. If randomization is used, each treatment in the study will have 
an equal chance of being assigned to a more fertile section or a less fertile sec- 
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tion. Randomization does not remove inherent properties of the experimental 
units, but it does introduce a "fairness factor" into the design by ensuring that no 
one treatment receives subjectively chosen favorable or unfavorable assignments 
(i.e., bias) (Bender, Douglass, and Kramer 1989). 

If spatial patterns are present, systematic sampling can provide more accurate 
estimates of treatment differences than random sampling. Systematic sampling, 
however, cannot be used to provide an estimate of experimental error for 
hypothesis testing (Bender, Douglass, and Kramer 1989). A potential problem in 
a systematic procedure is that an undetected spatial pattern within the 
environment may coincide (or fail to coincide) with the spacing of the sampling 
points, resulting in sampling bias (Cox 1958), but this is highly unusual in 
practice. Systematic sampling is superior to random sampling and is required if 
the goal of the study is to assess spatial distribution patterns of organisms or 
chemicals in the environment. Systematic sampling is especially effective if 
populations exhibit aggregated or clumped patterns. Hairston, Hill, and Ritte 
(1981) found that systematic grid sampling correctly identified the spatial 
patterns associated with 17 of 22 species of soil arthropods; random sampling 
correctly identified the appropriate distributions for only 12 of 22 species. 

Random sampling procedures are often desirable for environmental studies. 
Their major advantages include lack of bias, estimation of true experimental 
error, simplification of statistical assumptions concerning the population being 
sampled, and defensibility against criticism in legal situations (Borgman and 
Quimby 1988; Keith 1991). It is important to note that randomization assures a 
valid estimate of experimental error (Bender, Douglass, and Kramer 1989; Sokal 
and Rohlf 1995; Underwood 1997). Disadvantages of random sampling are cost, 
efficiency, and logistical considerations with respect to sample site location. 
Systematic sampling procedures require more careful preparation and 
justification than random procedures, especially if the systematic approach will 
be used to defend environmental decisions, but may offer substantial benefits in 
cost savings and interpretation (Borgman and Quimby 1988; Keith 1991). 

Subjective or judgmental allocation of sampling units is tempting where costs, 
limited time, or other constraints are present. Although this approach may 
provide information about the effects of S/O on T&E species, these designs are 
biased and raise serious issues of validity and applicability of results. Data 
collected from sampling units that have been subjectively allocated are usually 
inadequate for resolving compliance/legal issues concerning S/O effects. 
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Nonhomogeneous Mixing and Deposition of Chemicals in the 
Environment 

The release of military S/0 into the atmosphere results in the formation of 
heterogeneous clouds with unpredictable dispersion characteristics. Farmer and 
Davis (1986) evaluated phosphorus mass concentration data acquired from 
several studies. They concluded that cloud homogeneity varied even over a 
distance of 1 m. Because the phosphorus clouds contained irregular areas of 
clear air ("holes"), low phosphorus concentrations, and high phosphorus 
concentrations ("hot spots") that continually changed in size and shape, they 
concluded that (1) no information was available to indicate what volume of air 
was appropriate to characterize the overall concentration of the cloud, (2) the 
chemical content of the clouds was highly time-dependent, (3) the distribution of 
the data became badly scattered as the clouds dispersed and holes became more 
numerous, and (4) sampling devices tended to undersample when concentrations 
were low. 

These conclusions regarding the spatially unequal distribution of chemicals are 
consistent with other studies that evaluated dispersion and deposition 
characteristics of both military and nonmilitary chemicals. Haines (1993b) 
detected a 10-fold difference in fog oil deposition levels for two samplers placed 
side by side and exposed to ambient conditions for 24 hours. Harris (1984) found 
wide variations in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with 
concentrations ranging from 8.1 ppb to 57 ppb within a single square yard of soil. 
As these examples show, chemical concentrations in air and soil can vary widely 
even within a very small area; therefore, consideration of variability in samples 
should be a high priority when designing a monitoring strategy for S/O 
contaminants in the environment. 

Independence of Experimental Units 

Each of the experimental units should respond uniquely to the treatment being 
applied without being influenced by the response of the other units (Cox 1958). 
Satisfying this requirement ensures that the different treatment effects can be 
separated for evaluation. Independence of experimental units also eliminates 
crossover or lag effects for S/O impacts. 

Sampling Units 

Sampling units are the elements of the design that are actually measured. For 
vegetation sampling, a single sampling unit could be a leaf on a tree, the tree it- 
self, or a collection of trees.  The scale of the sampling unit depends on the na- 
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ture of the information desired, the spatial scale of the sampling design, and the 
type of design used to collect the sample. 

Types of Designs 

Completely Randomized Design (CRD). 

A CRD uses a simple random selection procedure to select experimental or 
sampling units. In a CRD, each unit has an equal and known probability of 
being chosen for measurement. The units may be chosen either with or without 
replacement. If simple random sampling is performed with replacement, the 
units are returned to the group being sampled each time they are selected; 
therefore, the units have more than one chance of being selected. If simple 
random sampling without replacement is the method chosen, then each unit is 
withdrawn from the sampling pool as it is chosen; no unit can be selected more 
than once. Advantages of CRD are statistical validity, reliable estimates of 
experimental error, and straightforward analysis and interpretation of results 
(Krebs 1989). The major disadvantage is the lack of representative samples in 
spatial contexts or when appreciable heterogeneity is present. CRDs work best 
in situations where the experimental material is highly homogeneous, the effects 
of heterogeneity are not important to the objectives of the study, or the 
information needed to define strata is lacking. 

Stratified Randomized Design (SRD). 

With a stratified design, sets of treatments are randomly assigned within prese- 
lected strata (Krebs 1989). These strata could be habitat or ecosystem types, or 
groups resulting from a pilot study classification where experimental units 
within groups had lower variance than between groups for a selected criterion. A 
primary purpose of the stratified random design is to decrease experimental er- 
ror resulting from natural environmental or organism variability by accounting 
for variance components extraneous to the study. In this way, analysis sensitiv- 
ity is increased by increasing statistical power. The more quantitative informa- 
tion that is known about stratification, the easier it is to decrease Type II error 
(fail to reject null hypothesis when it is false). In experimental designs where 
Type I error (reject null hypothesis when it is true) is important, therefore, 
stratification provides the opportunity and statistical justification to a priori re- 
duce a (P-value) in inference tests, while still maintaining low Type II error. In 
a military setting, stratification may be desirable when an S/O concentration 
gradient is present in the soil, or when the organisms being used as sampling 
units differ in age, sex, or size. Advantages of SRD are higher accuracy and 
lower variation across heterogeneous units.   Additionally, the separate strata 
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can be analyzed as independent entities, which may sometimes increase the 
amount of information available from the data. Disadvantages are the extra ef- 
fort required to identify strata and to allocate samples among strata, and more 
complex analysis and interpretation. 

Systematic design. 

A systematic design is based on using a sampling grid or other spatial sampling 
scheme in which sampling units are selected in sequential order at regular 
intervals (Krebs 1989). Typically, the location of the first sample is randomly 
selected, and all succeeding samples are taken at pre-determined, equally spaced 
intervals. Systematic designs can also be used in sequential studies where 
samples are taken at fixed time intervals, or where individual organisms are 
selected from a group according to a pre-determined sampling scheme (e.g., 
select every fifth mouse captured for analysis of tissue HC concentrations). 
Systematic designs are required for pattern analysis studies to determine the 
nature of spatial or temporal patterns. 

Systematic-random design. 

The systematic-random design is an excellent design for ecological field studies, 
because it fully utilizes the advantages and statistical properties of both 
systematic and random designs (Krzysik 1998a). The systematic component 
ensures sample representation and spatial coverage throughout the landscape of 
interest. This is particularly important when study sites are large and spatial 
heterogeneity is evident. The random component ensures sampling 
independence, objectivity, the avoidance of sampling bias, and correct estimates 
of experimental error. This is the design that was successfully used to assess the 
effects of landscape-scale military training activities on Mojave Desert 
vertebrate and plant communities (Krzysik 1984,1985,1994). 

Factorial design. 

Factorial designs are used in manipulative studies when the researcher desires 
to evaluate the interactions resulting from combinations of two or more 
treatments (Zar 1999). This design is motivated by, and is indeed mandatory 
for, assessing interaction effects among treatments. The factorial design may be 
incorporated within randomized or systematic designs. As an example, a 2 x 2 
factorial design could be used to evaluate the effects of high and low fog-oil 
concentrations combined with high and low HC concentrations in a controlled 
experiment. The treatment combinations, or factorial arrangement of 
treatments, are shown in Table 1. 
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Table 1. Example of a 2 x 2 factorial design to evaluate the effects of high and 
low fog-oil concentrations combined with high and low HC concentrations. 

High HC LowHC 

High fog oil High fog oil/High HC High fog oil/Low HC 

Low fog oil Low fog oil/High HC Low fog oil/Low HC 

Repeated Measures Design (RMD). 

In a repeated measures design, each experimental or sampling unit is sampled 
more than once. If the study is manipulative, then all units receive all 
treatments in random sequence. If the study is mensurative, then no treatments 
are applied, but each unit is measured for more than one trait or sampled more 
than one time. RMD may be used (1) when experimental manipulation is 
impossible, such as with human subjects, (2) when the amount of experimental 
material is limited, (3) when the researcher desires to use each experimental 
unit as its own control, (4) when there is a special need for the researcher to 
minimize between-unit variability, or (5) when the researcher wishes to measure 
S/O effects over time (Zar 1999). This design requires specific analysis 
procedures (Crowder and Hand 1990). An important advantage of this design is 
the minimization of within-treatment variability. The main disadvantage of 
RMD is that samples taken from the same units are autocorrelated and 
statistically dependent, and the design has limited interpretation and 
experimental flexibility. 

Multi-stage design. 

Multi-stage designs use a hierarchical grouping of units as successive stages in 
sample selection (Foreman 1991). Larger sampling units are selected in the 
initial sampling stage, and smaller sub-units are selected in successive stages. 
For example, the first stage of sample selection might entail randomly selecting 
one of several ecosystems to evaluate; the second stage would be random 
selection of individual plants within the ecosystem; the third stage would be the 
systematic selection of a certain number of branches on each plant; and the 
fourth stage would be the random selection of leaves on the selected branches. 

Execution of Experiment: Sample Collection and Analysis 

Pilot Study 

A well-conducted pilot study is invaluable, often mandatory, for testing the fea- 
sibility of proposed field methods, discovering weaknesses in the sampling proto- 
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cols, assessing variability in data, determining sample sizes, identifying stratifi- 
cation schemes, assessing suitability of controls, collecting parameter values for 
the final experimental design, and developing satisfactory statistical analysis 
procedures. Elements of the design that should be critically evaluated during 
the pilot study include: 

• locating sites with primary and secondary chemical constituents of interest 
• developing criteria for sampling representativeness 
• evaluating appropriateness of location and timing for sample collection 
• determining equipment, materials, and methods needed for collecting field 

samples 

• selecting methods for handling, transporting, and preserving biotic/abiotic 
materials and chemical samples 

• using field determinations to assess degree of instability for chemicals 
• identifying requirements for additional variables to be included in the design 

(Barcelona 1988). 

The selection and characterization of control sites should also be conducted 
during the preliminary trials. The pilot study should involve 10 to 15 percent of 
the total sampling effort, while another 10 to 15 percent of the sampling effort 
should be reserved for resampling if necessary in the event of cross- 
contamination or other unanticipated problems (Keith 1991). 

Quality Control 

The quality of the data needed should be considered in the early stages of 
planning the sampling design. Data quality is based on the level of confidence 
required to meet study objectives. If the study is a preliminary exploration of 
contaminant extent and concentration, data quality criteria may be less 
stringent than if the study is being conducted in accordance with Federal, state, 
or other protocols to satisfy environmental regulations. Mandated studies must 
adhere to strict rules regarding sampling methods, transport of sample 
materials, and chemical laboratory procedures, or the data may be regarded as 
unacceptable (Keith 1991). The cost and effort involved with acquiring high- 
quality data may be beyond the amount budgeted for the effort. In such cases, 
potential compromises on data quality should be identified in advance, and 
either more funding allocated, objectives changed, the scale and/or resolution of 
the project adjusted within budget constraints, or the project should be dropped 
(Krzysik 1998a). 

Considerable uncertainty exists in every part of the sampling process (Keith 
1991). Efforts to control both experimental and procedural errors need to iden- 
tify and address problematic areas in the field design layout, sample collection 
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techniques, sample transport process, laboratory analysis, and data reporting. 
Procedural errors such as sloppy or invalid field techniques, transposed or wrong 
numbers in .recorded data, undetected cross-contamination, or deterioration of 
samples, are usually undetected and cannot be corrected. Such "hidden" mis- 
takes may be common, are usually of greater magnitude than experimental er- 
rors, and can compromise the interpretation and validity of study results (Keith 

1991). 

Number of Samples 

The feasibility of obtaining the sample size needed to achieve the desired level of 
precision should be evaluated in a pilot study or at least in focused field studies 
before initiating the project. This is important for sampling efficiency and 
economy, because field data collections and measurements are resource and 
time-consuming. Additionally, the amount of experimental material available 
may be limiting in S/O studies. Statistical analysis procedures and 
interpretations are simplified when balanced design is used with an equal 
number of samples measured for each treatment or characteristic of interest. 
When unequal sample sizes are unavoidable, robust analysis procedures should 
be selected to improve reliability. The adequacy of statistical power should be 
assessed before the project begins and reported in the results (Krzysik 1998a). 
The researcher also needs to consider in advance how to deal with missing data 
values resulting from samples that are lost, contaminated, or otherwise 
unusable. 

Significance Level (a) and Statistical Power (1 - ß) 

Significance and power are related measures of the ability of a hypothesis test to 
predict the true condition of a population based on the data in the analysis. The 
relationship between these measures is shown in Table 2. The researcher should 
determine appropriate levels for a (alpha) and ß (beta) in advance for an S/O 
study; once these values are known, the required sample size can be calculated. 

Table 2. Relationships between the true condition of a population and the results of a 
statistical test. 

True condition of population 

Result of 
statistical 
test 

Ho true, HA false Ho false, HA true 

Ho not rejected Correct decision 

confidence level = 1-a 

Incorrect decision 

P = P (Type II error) 

Ho rejected Incorrect decision 

|       a = P (Type I error) 

Correct decision 

Power = 1 - p 
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The confidence level for a statistical test describes the degree of certainty the 
researcher may place in the process used to generate the results of the test. The 
confidence level is expressed as the difference between 1.00 (perfect confidence) 
and a (the probability of committing a Type I error; see further explanation in 
the remainder of this section). 

The significance level for the statistical test is a, which describes the probability 
of committing a Type I error, or the probability of rejecting a true null hypothesis 
(i.e., concluding from test results that a difference exists, when actually no 
difference is present). In statistical inference (hypothesis testing), the value of a 
must be set by the experimenter PRIOR to conducting the study, and it is 
referred to as an a priori rejection criteria. 

ß is the probability of committing a Type II error, or the probability of failing to 
reject a false null hypothesis (i.e., concluding from test results that no difference 
exists, when actually a difference is present). Statistical power (1 - ß) is the 
probability of not making a Type II error. Report a power analysis with your 
data. Based on your sample size and the inherent variability in your data (error 
variance), how small a difference could you have detected as significant with the 
a value that you a priori selected (Krzysik 1998a). For an introductory 
discussion of statistical power, see Krzysik (1998a); for a comprehensive 
treatment of the subject, see Cohen (1988). 

The probability of making a Type I error is inversely proportional to the 
probability of making a Type II error, so the consequences of making either 
should be considered carefully when designing a field study, especially if impacts 
on T&E species populations and habitats are being monitored. If a researcher 
makes a Type I error, he may conclude that T&E species or habitats are being 
affected by S/O when they actually are not, and the result may be undue 
restriction of military training activities. On the other hand, if a researcher 
makes a Type II error and concludes that S/O have no effect on T&E species 
populations and habitats when they actually do, a listed population could be 
impacted, and the installation would not be in compliance with the Endangered 
Species Act. It is the view of the authors that in conservation biology and in 
judgments and policies based on experimental results, it is desirable and 
prudent to make conservative decisions concerning species/population and 
habitat effects. Therefore, close attention and emphasis must be placed on not 
making Type II errors. 

Minimizing Type II error is the same as increasing statistical power. Statistical 
power can be increased in four ways (Krzysik 1998a): 
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1. Use large or at least appropriate sample sizes, which increases degrees of free- 
dom. Increasing sample size is the most important and visually the most feasible 
way of increasing power. 

2. Design experiments with a small error variance (within population variance) and 
reduced confounding effects. This has the effect of producing a smaller 
denominator in the F-test; therefore, significance can be detected with smaller 
between treatment variance. 

3. Increase the value of a. This is the usual alternative when sample size cannot be 
increased. Although this increases power and reduces the chances of making a 
Type II error, it increases the chances of making a Type I error. The trade-off is 
mutual when selecting between making Type I or Type II errors. 

4. Increasing A (difference between population means that is a priori "considered" 
significant) increases power, because at any level of sampling variability, it is 
more reassuring to attribute significance to larger differences than to smaller 
differences. 

P-Values 

P-values or observed significance levels (OSLs) are the direct output of the 
analysis process in statistical inference. It is imperative that a is assigned 
PRIOR to the experiment or analysis. The P-value is used to determine 
whether to reject or not reject the null hypothesis. Once a statistical analysis is 
concluded, the P-value is compared to a. If the P-value is less than a, then the 
null hypothesis is rejected, and the alternative hypothesis is accepted with the 
potential for making a Type I error of a probability. When P is greater than a, 
then the experimental analysis has failed to reject the null hypothesis and, 
although the null hypothesis is "NOT PROVEN," it is accepted under the 
condition of the possibility of making a Type II error of ß probability. 

A common convention in biology has been to set a at 0.05 (a probability of 
committing a Type I error 1 out of 20 trials). There is no biological or statistical 
basis for the selection of P = 0.05, just "common usage" (Krzysik 1998a). 
Statisticians have argued (and published papers on the subject) for decades that 
the use of significance tests is over-emphasized in the reviewed scientific 
literature (see references in Krzysik 1998a). Nevertheless, biologists will find it 
convenient to use significance levels of 0.05, while scientists with less noisy 
(variable) data sets will use 0.01, and social scientists will use 0.1. In many 
research results, especially in mensurative studies, it may be more informative 
to simply provide analysis results in a P-value table, along with sample sizes and 
statistical power, without judgment of significance, so the reader is informed of 
the relative magnitude of the comparisons. 
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Physical Size (Volume or Mass) of Sample Unit 

The physical size of the sample unit to be taken must be appropriate for the 
density and spatial distributions of the objects being measured (Barcelona 1988). 
For example, the mean and variance for the chemical concentration of a 50-g 
sample of soil may be quite different from that of a 500-g sample taken from the 
same site because of differences in spatially dependent processes such as degree 
of infiltration, bulk density, and obstructions such as rocks or roots. The optimal 
size and spacing of sampling quadrates depend on the size and spatial patterns 
of the objects that are being sampled (e.g., plant populations) (Kent and Coker 
1992). 

Length of Sampling Period 

Consideration must also be given to the size of samples that exhibit time- 
dependent variation in the object being measured. A collection filter exposed to 
the air for sampling gaseous compounds will have increasing concentration with 
time. Such a filter may become oversaturated and fail to collect the full chemical 
load imposed upon it. In addition, chemical instability may result in degradation 
and reduced sample concentration over the course of the sampling period. 
Another factor to consider is the need to match the timing of sampling to 
reservoir turnover, release rates, or accumulation rates for each variable of 
interest (Green et al. 1991). 
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3  Statistical Analysis Considerations 

Data Types and Data Quality 

Data consists of numerical values assigned to some characteristics of the 
population of interest (Taylor 1990). The type of analysis procedure to be used 
may depend on the type of data collected. The amount of confidence that can be 
placed in the final results of an analysis depends a great deal on the quality of 
the data obtained. 

Data Types 

Discrete data are numbers with an exact value. Discrete data may consist of 
positive and negative integers, enumerators (counting numbers), or fractions 
that can be converted to finite decimal values. Examples of discrete data are the 
number of individuals in a population, number of paces from one location to 
another, and number of drops in a milhhter of liquid. The age of an organism is 
usually expressed as a discrete value. Fixed distances or times (e.g., points 
spaced every 0.5 meters along a transect; every 2 hours) are also considered to be 
discrete units. 

Continuous data are numbers with measurement uncertainty associated with 
them. The uncertainty is caused by limitations in the ability of measuring 
devices to record values beyond a certain level of precision. Measurements of 
height, weight, and length are examples of continuous data. For example, height 
might be measured to the nearest meter, centimeter, or millimeter, depending on 
the resolution of the measuring device. 

Interval data consist of numbers that are regularly spaced on an arbitrary 
scale with the location of zero defined by the researcher. Interval data can be 
discrete or continuous. Examples of interval data are time (seconds, minutes, 
hours, etc.), temperature (Kelvin, Celsius, Fahrenheit), compass degrees (North 
equals both 0° and 360°), and xy grid coordinates. A researcher may also create a 
specialized scale to describe characteristics of the data being collected (e.g., a 
scale of-10 to +10 to describe habitat desirability). 
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Percentile or ratio data are used to show relationships between two individ- 
ual measurements, or between a single measurement and the sum of all meas- 
urements. Great care should be taken to ensure that a common reference base 
for comparison exists between the data values. Examples of valid percentile 
data are vegetation cover scores for quadrates or transects of fixed size (e.g., 0, 
25, 50, 75, and 100 percent of the quadrate area or transect length is covered by 
vegetation), and percent slope data (e.g., a 5-ft vertical rise for every 100 ft of 
horizontal distance would equal a 5 percent slope). Percentile or ratio data with 
different reference bases should not be used for comparisons. 

Qualitative data consist of non-numeric variables that convey information 
about the object under study. Examples of qualitative data are gender (male, 
female), colors of the rainbow (red, orange, yellow, green, blue, indigo, violet), 
and health status (healthy, nonhealthy). Qualitative data are often recoded to 
numeric values for analytical purposes. 

Rank or ordinal data consist of numeric or non-numeric values arranged in a 
definite order. Rank data can be in ascending order (smaller to larger values) or 
descending order (larger to smaller values). Examples of rank data are relative 
size or amount (small, medium, large), habitat quality (poor, fair, good, 
excellent), vegetation density scores (5 = dense vegetation, ..., 1 = sparse 
vegetation, 0 = no vegetation), and species association scores (-1 = species are 
never found together, 0 = species are neutral with respect to co-occurrence, 1 = 
species are always found together). In addition, discrete or continuous data can 
be ordered and assigned a ranking for certain kinds of analyses. 

Categorical data. Sets of discrete or continuous data may be grouped and 
analyzed by categories. Examples of categorical data would be elevation above 
sea level (Category 1 = 0-100 ft, Category 2 = 101-200 ft, etc.), avian life stages 
(nestling = 0-50 days, fledgling = 51-90 days, juvenile = 91-365 days, adult = 
365+ days), or pH levels (very acidic = pH 1 to pH 3, moderately acidic = pH 4 to 
pH 6,..., very basic = pH 11 to pH 14). 

Binary data are a special case of categorical data consisting of 0 and 1 values 
assigned to distinguish between two mutually exclusive conditions. Binary data 
are most often used to indicate presence (value = 1) or absence (value = 0), or to 
indicate if a particular condition is true (value = 1) or false (value = 0). Contrary 
to popular belief, ordinal, categorical, and binary data may be superior to 
continuous metric data in many ecological contexts, especially in multivariate 
analysis (Krzysik 1987). 
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Data Quality 

Ensuring high data quality is critically important to the success of a research 
project. Taylor (1990) stated, 

It is almost useless to apply statistical techniques to poorly planned data. 
This is especially true when small sets of data are involved. In fact, the 
smaller the data set, the better must be the preplanning activity. Any 
gaps in a data base resulting from omissions or data rejection can 
weaken the conclusions and even make decisions impossible in some 
cases. 

Factors that affect data quality and its subsequent analysis include: reliability, 
representativeness, inherent variability, bias, procedural errors, precision, 
accuracy, sensitivity, and outliers. 

Reliability is data quality that can be documented, evaluated, and believed 
(Taylor 1990). The experimental or sampling design should be completely and 
carefully documented so that the steps used to collect data are clearly outlined. 
The assumptions used in developing the data collection protocols, the sampling 
procedures used, quality control procedure implemented, and any problems 
encountered during the sampling process should be included in the 
documentation. Peer review of the design before it is implemented in the field is 
highly recommended. The peer review should include the input of one or more 
professional statisticians and expertise in the field of investigation — especially 
when field studies are involved. 

Representativeness is simply meeting the condition that sampled sites or 
objects are representative of the population of interest. This data quality is 
discussed in Chapter 2 in the section "Determination of True Population To Be 
Sampled." 

Variability or random errors are the difference between the true value of a 
parameter and the values of each measurement used to estimate the true value. 
Inherently, some environmental variables are more variable (noisy) than others. 
Random errors associated with taking many measurements will have an average 
of zero in the long run (Taylor 1990). For example, if several measurements us- 
ing the same scale are used to determine the mass of a fish that is exactly 2.00 
kg, the actual measurements recorded might be 1.94, 2.01, 2.17, 2.00, 1.87, and 
1.96 kg. The differences between each measurement taken and the true mass of 
the fish are the random errors.  Environmental data contain numerous sources 
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of variability.   Sources of such variability must be adequately identified and 
quantified for sampling efforts to be successful. Triegel (1988) noted: 

In the initial stages of planning a' sample collection program, 
identification of the potential sources of variability is critical. The nature 
of the variability may affect the number of samples to be collected, the 
method(s) of collection and analysis, and the overall design of the 
sampling program. The identification of the sources of variability and 
bias before starting field operations may eliminate the use of 
inappropriate collection and analytical methods or sampling intervals. 

Bias is defined as systematic error associated with a given measurement 
process which always has the same sign and magnitude (Taylor 1990). An 
important source of bias is personal researcher or surveyor subjectivity in 
collecting data, making measurements, or selecting sites or individuals/objects. 
Other biases include: unrepresentative sampling, degradation of chemical 
compounds between the time of sampling and laboratory analysis, improperly 
calibrated instruments, and protocol mistakes. For example, a mass balance 
that measures 2 g short of the true mass of a sample will give consistently lower 
values for all samples measured. An instrument that has been calibrated at one 
temperature but used at a different temperature may introduce bias into the 
results. If time were the measurement of interest, then a clock which runs 10 
minutes ahead of the true time would have a positive bias; a clock which runs 10 
minutes behind the true time would have a negative bias. See Green (1979) for 
discussions of bias. 

Procedural errors are errors that are the result of poorjy executed 
experiments, unstable measurement systems, or poor execution of data 
measurement or collection. These errors are not statistically manageable and 
can invalidate an otherwise good research design or sampling method (Taylor 
1990; Lessler and Kalsbeek 1992). 

Precision, usually expressed in terms of standard deviation, has been defined 
as a measure of mutual agreement among individual measurements of the same 
property (Smith et al. 1988). The final precision of estimated treatment effects 
depends on several factors, as follows (Cox 1958): (1) the intrinsic variability of 
the experimental material, (2) the accuracy of the sampling effort, (3) the 
number of experimental units measured, (4) the number of subsamples taken 
from each experimental unit, (5) the nature of the experimental design and 
sampling methods, and (6) the method of statistical analysis. 
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Accuracy describes the magnitude of systematic error present in a series of 
measurements (Keith 1991). If the systematic errors associated with the meas- 
urements are small, the measurements have high accuracy. For instance, if the 
true temperature is 21.000 °C, and a thermometer reading is 21.005 °C, the 
thermometer has high accuracy. If the thermometer reading is 28.000 °C, the 
thermometer has low accuracy. Such instruments may state their accuracy as a 
percentage of their range, e.g., -50 to +200 °C ± 1% (i.e., 1% of the 250 °C range, 
or 2.5 °C). 

Sensitivity is the ability of an experimental design to detect true differences if 
they exist (Bender, Douglass, and Kramer 1989), and is directly related to 
statistical power (Cohen 1988). It is defined as the inverse of the standard 
deviation for the difference between two means. In other words, if two or more 
experimental designs could be used to estimate the means of a variable of 
interest under two different sets of conditions (the difference between a smokes 
area and a control area, for example), the design that can detect the smaller 
difference between the two means is the more sensitive design. 

Outliers are observations that deviate substantially from the majority of the 
observations in a data set. They can have a considerable effect on the results of 
an analysis procedure and could potentially cause a researcher to draw 
erroneous conclusions from the data. If outliers are detected in a data set, the 
researcher should consider how the presence of the outlier will affect analysis 
results. Conducting the analyses with and without outliers and evaluating the 
difference that outliers make is highly recommended. Outliers should not be 
arbitrarily excluded from an analysis; rather, an assessment of their influence 
should be undertaken, and the decision to include or exclude them should be 
based on the extent of their effect on the results. The reason that the 
observation is an outlier should also be considered — is the outlier a result of 
natural variability in the data, observer error, an abnormality in the conditions 
present at the time of the measurement, or some other factor? Such an 
evaluation of unusual data may provide valuable insight into the data set as a 
whole. 

Approaches to Statistical Analysis 

Statistical analysis consists of at least six general approaches: estimation, 
descriptive statistics, exploratory data analysis (EDA), inference, modeling, and 
spatial analysis (Krzysik 1998a). 
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Estimation 

The most common example is estimating the mean and associated precision in a 
population of interest. The precision in estimating the mean (or another 
statistic) depends on inherent variability in the population and the sample size 
used to estimate the statistic under investigation. Statistical precision is called 
error and is expressed as standard deviation, standard error, confidence interval, 
or coefficient of variation. Estimation directly leads to descriptive statistics. 

Descriptive Statistics 

Descriptive statistics are generally summary statistics for all the primary 
parameters or variables in the project, generally stratified by spatial, temporal, 
or user-defined classes. Summary statistics are provided by all statistical 
analysis packages. Graphical outputs and displays are indispensable 
components of descriptive statistics. The important foundation in the philosophy 
and techniques of data display has been the work of Tufte (1983, 1990). 
Practical guidance for using graphics effectively can be found in Chambers et al. 
(1983) and Cleveland (1993). 

Measures of central tendency or location. 

Measures of central tendency or location provide estimates of the central or 
middle value for a set of measurements. Different measures of central tendency 
are used, depending on the distribution of the data, the presence or absence of 
outliers, and degree of symmetry. The most common measures of central 
tendency are the arithmetic (sample) mean, geometric mean, median, and mode. 

Arithmetic mean. The sample mean, also called the average, is a measure of 
the central value for a set of measurements. It is calculated as the sum of all 
measurements divided by the number of observations. The mean is an effective 
measure of central tendency only if the underlying distribution of the data is 
symmetrical. The mean is very sensitive to outliers, so even a few unusual 
observations may unduly influence the results. 

Geometric mean. The geometric mean may be used when (1) the parameter 
of interest is a rate or ratio, or (2) when a measurement taken in one time period 
is dependent on a measurement taken in a previous time period. For example, if 
a researcher wishes to evaluate the average population growth rate of purple 
balduina (Balduina atropurpurea) over a 5-year period, then the geometric mean 
of population growth rate would be a more appropriate statistic than the 
arithmetic mean. 
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Median. The median is the middle value in an ordered set of numbers if the 
number of observations is odd. It is the average of the two middle values of 
ordered numbers if the number of observations in the set is even. Half of a 
sample has values larger than the median and half has smaller values. The 
median is a more stable measure of the central value for a series of 
measurements if outliers are present or if the distribution is skewed 
(asymmetrical). A common example of this is that the median is a more 
meaningful metric than the mean for characterizing the price of housing in any 
locality. This is because the cost distribution has a highly skewed tail for 
expensive homes (i.e., the highest priced homes can be significantly above the 
mean, while the cheapest homes can only approach "0" to some rational finite 
cost). This distribution inflates the value of the mean relative to the median. 

Mode. The mode is the most frequently occurring value in a set of numbers. 
In the set {14, 25, 18, 17, 14, 65, 11}, for example, 14 is the mode because it 
occurs more often than the other numbers. 

Measures of dispersion. 

Measures of dispersion provide information about how far the measurements 
extend away from a central value (i.e., variability or scatter). Given three sets of 
numbers A={60, 60, 60, 60, 60}, B={20, 40, 60, 80, 100}, and C={58, 59, 60, 61, 
62}, one can see that the mean for all three sets is 60, but the extent to which the 
numbers in each set differ from 60 is quite different for the three sets. The 
measures of dispersion most commonly used to evaluate this deviation from the 
mean are the range, variance, standard deviation, standard error, coefficient of 
variation, and confidence interval for the mean. 

Range. The range is the largest value of a set of numbers minus the smallest 
value. It is a measure of the extent of variation in the data. For a set of 
numbers {2, 33, 14, 28, 43} the range would be 43 - 2 = 41. The range is the 
simplest measure of dispersion to calculate, but contains limited information 
about the nature of the scatter. 

Variance. Variance is a weighted measure of distance between the 
observations in a sample and the sample mean. Since variance is a squared 
value, it is always positive. The larger the variance, the greater the overall 
distance between the measurements and the mean for the sample. 

Standard Deviation (SD). The SD is the square root of the variance. It has 
the advantage of being expressed in the same units as the original measure- 
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ments.   The SD is usually the most effective way of showing variability in a 
given data set. 

Standard Error (SE). The sample SE is the SD divided by the square root of 
the number of observations. SE closely reflects the precision in estimating the 
mean. It is used to indicate the relative precision of the SD when the 
measurements come from several sets of observations rather than from 
individual observations. For example, an SD calculated from a sample of 5,000 
observations would be a better estimate of the true dispersion of data about the 
mean than an SD calculated from a sample of 10 observations. This finer scale 
of precision is reflected by the SE. The value of SE compared with SD is directly 
related to sample size. As sample size increases, the SE decreases in relation to 
SD. 

Coefficient of Variation (CV). The CV is a relative measure of the spread of 
the data. To use it effectively, the researcher should be familiar with related 
data to determine if the spread is unusually large or small compared with the 
other data sets. The coefficient of variation is defined as. the SD divided by the 
mean. 

Confidence Interval (CI) for p.. Sometimes a researcher may wish to express 
the variability of the measurements about a mean as a range of numbers rather 
than as a single number. One way to accomplish this is to use the CI for the 
mean. The result is expressed as (LL, UL), where LL is a number that indicates 
the lower limit of confidence for the data and UL is the upper limit. The value of 
the CI is: CI = mean +/- (SE x ta), where ta is the value from a t-table at the a 
level. For example, when a = 0.05, ta = 1.96. This means that, for normally 
distributed data, 95 percent of the data lies between -1.96SE and +1.96SE of the 
true mean. See Sokal and Rohlf (1995) or any basic statistics textbook for more 
information. 

Exploratory Data Analysis (EDA) 

EDA is an important class of statistical analysis that has not been fully 
appreciated despite an excellent and technical foundation by Tukey (1977). EDA 
has also been called Initial Data Analysis (IDA) by Chatfield (1988), who 
concludes that the process is indispensable and required by the statistician to get 
a feeling for the data. The routine use of EDA has become a current reality 
because of the power of modern microcomputers and the availability of 
interactive graphics and extensive graphics output options in microcomputer 
statistical software packages (e.g., SPSS, SYSTAT, S-PLUS, MINITAB, SAS). 
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Interactive graphics enables rapid examination of data patterns and trends from 
scatterplots of raw data, transformed or rescaled data, or residuals (Chambers et 
al. 1983; Cleveland 1993). The scatterplot matrix is an important procedure. 
For example, if there are 10 variables in the data set, the scatterplot matrix 
routine produces a single plot containing 100 subplots of each combination of the 
10 variable pairs plotted against one another. The plots above the diagonal are 
the same as the plots below the diagonal except that the ordinates and abscissas 
of all paired variables are interchanged. 

Graphs. 

Ellison (1993) gives a good overview of several types of graphical displays for 
data analysis, and of the strengths and weaknesses associated with such 
displays. Graphical displays commonly used to investigate patterns in data 
include bar charts, pie charts, and scatterplots. Other graphics that can be used 
to display summaries of statistical information for pattern analysis and 
comparisons are frequency histograms, box-and-whisker plots, and stem-and-leaf 
plots. Probability plots provide visual estimates of whether or not data fit a 
given distribution (e.g., normal probability plots are used to evaluate whether 
data are distributed according to a Gaussian distribution). Additional 
suggestions for presenting data are demonstrated by Green (1979). 

Statistical distributions. 

A statistical distribution, or probability distribution, is an arrangement or 
pattern of data values around a central value which can be described by 
mathematical functions, called probability density functions. Generally, the 
minimum amount of information needed to characterize a distribution will 
include the mean, sample standard deviation, and the number of samples used 
in the calculations (Taylor 1990). Some common distributions in ecology are the 
binomial, negative binomial, Poisson, normal, chi-square, exponential, and 
lognormal. Refer to Beyer (1988) or Hastings and Peacock (1975) for descriptions 
and properties of these distributions. 

Many hypothesis tests are based on the assumption that the data follow a nor- 
mal (Gaussian) distribution. Such tests fall into the category of parametric 
analysis techniques. Since many kinds of ecological data violate this assump- 
tion, the appropriateness of using such data for inferential statistics should be 
determined prior to analysis. Some types of data can be transformed mathe- 
matically to approximate a normal distribution; however, problems with inter- 
preting the transformed results may arise. Nonparametric tests are statistical 
tests that make no assumptions about the distribution of the data. Nonparamet- 
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ric tests should not be used, however, as an excuse for poorly designed or exe- 
cuted research studies or with ill-behaved data sets. Researchers all too often 
rely on these tests as a last resort to justify the use of poor data (Krzysik 1998a). 
Additionally, researchers may not be aware that these tests are subject to the 
same limitations of asymptotic behavior, reasonable sample sizes, and sample 
independence as are parametric tests (Krzysik 1998a). It is probable that a ma- 
jority of the research community believes that nonparametric methods possess 
low statistical power in contrast to parametric tests, but in reality the difference 
is not practically significant (Krzysik 1998a). 

Inference 

Inference or hypothesis testing is probably the most familiar use of statistical 
analyses. Inference is applied by the investigator to decide if the observed 
difference in a test statistic (e.g., mean) between two or more populations should 
be considered different or due to chance at some a priori set probability. The 
question is posed as a null hypothesis to falsify (null hypothesis: populations are 
homogeneous). If no difference exists between two or more populations, what is 
the probability of selecting samples with differences as large as or larger than 
those observed? This probability is the familiar P-value or a. If probability is 
very small, then one concludes that the differences are unlikely to be due to 
chance, and there is a statistically significant difference in the populations 
(null hypothesis rejected) at the P-level. If probability is large (observed 
differences may be due to chance alone), then either the populations are 
homogenous at the P-level, or the statistical power of the test was too low (i.e., 
some combination of small sample size, high natural variability, or the 
"difference" selected to assess significance was too small). It is imperative to 
remember that the null hypothesis can never be proved correct, but can only be 
rejected with a known risk of being wrong. 

Modeling 

Modeling represents the efforts to verify that experimentally derived data fit 
specific mathematical models related to biological, physical, geological, or 
chemical phenomena or processes. The most common example in statistics is 
linear regression. Do the data fit a straight line? Of course, any kind of 
polynomial curves in any dimensions can be equivalently modeled, but with 
much more difficulty. The four main strategies in model building are model 
formulation, model estimation or fitting, sensitivity analysis, and model 
validation. Model validation includes the familiar: 

Experimental data = mathematical model + residuals. 
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For further analysis the residuals can be subjected to standardization 
(homogeneous variances), their distribution can be examined by using 
probability plots, plotting residuals versus selected variables, or the residuals 
can be subjected to further analysis or modeling. The analysis of residuals may 
provide valuable insight into a very important facet or unexpected behavior of 

the model. 

Spatial Analysis 

Spatial analysis has developed quite independently from mainstream statistics 
and even has its own terminology. Spatial statistics is based on data that are 
georeferenced. In other words, data points are referenced to two or three 
dimensional occurrences in space. Spatial statistics and its toolbox, therefore, 
are closely associated with geographic information systems (GIS), and the 
analysis, description, projection, or display of point, vector (line segments), and 
polygon patterns of landscape elements. For an introduction to GIS and its 
literature see Krzysik (1998b). An important capability of spatial statistics is the 
interpolation and smoothing of spatially explicit field-collected data for 
prediction, visual interpretation, and demonstration (Krzysik 1998b). As a direct 
result of this capability, an important application is the use of Thin-Plate Splines 
for modeling and monitoring the distribution and density patterns of T&E 
populations (e.g., the desert tortoise; Krzysik 1997). Spatial statistics is 
computer intensive and was once the domain of mainframe and minicomputer 
workstations, but is rapidly gaining popularity because of the widespread 
availability of "inexpensive" high-powered microcomputers. See Krzysik (1998a) 
for fundamental references. 

Univariate Statistics 

Univariate procedures are statistical analyses that contain only a single 
dependent or response variable, and one or more independent variables or 
predictor variables (simple linear regression). Additionally, some univariate 
statistics may have two independent variables (e.g., bivariate correlation). Both 
parametric and nonparametric methods are discussed. 

Parametric Methods 

Parametric analysis procedures are based on three primary and important 
assumptions, listed here in order of their importance (Krzysik 1998a): 
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1. Observations are independent of one another: random observations, sampling or 
experimental errors are independent; and avoidance of sampling or experimental 
bias 

2. Populations (comparisons) possess homogeneous variances (residuals or data 
scatter) 

3. The data from population samples or observations are normally distributed. 

These assumptions can formally be tested, but typically they are not. Goodness- 
of-fit and normality tests and calculations of skewness and kurtosis (see 
glossary) are generally available in all basic statistical packages. Bartlett's test 
assesses homoscedasticity (occurrence of equal variances among treatment 
groups), but its practical value has been questioned (Harris 1975), and it is 
unduly sensitive to non-normality. Cochran's test (1951) uses the ratio of the 
largest variance to the sum of all sampled variances as a test statistic, and may 
be the most desirable test for the presence of excessive heteroscedasticity 
(Underwood 1997). Sampling independence is usually difficult to detect, and is 
directly related to a proper experimental design. In some cases, correlational 
tests or the examination of scatterplots of the raw data may detect it. 
Parametric methods are generally considered robust with respect to these 
assumptions, especially assumption number 3, when sample sizes are reasonable 
(e.g., 20 to 30) and because of the central limit theorem, particularly when the 
raw data have been properly transformed (Krzysik 1998a). However, 
assumption number 1 can often lead to invalid statistical inference, even with 
large sample sizes. Transformations only apply to assumptions 2 and 3. 

Parametric methods are the well-known statistics taught in introductory 
statistics courses, and represent the methods most frequently used in biological 
research. Familiar examples include: analysis of variance (ANOVA), analysis of 
covariance (ANCOVA), correlation analysis, and regression models. Linear 
regression belongs to the family of generalized linear models (GLM), and ANOVA 
and ANCOVA are special cases of linear regression. Nonlinear or polynomial 
regression and multiple regression (more than one independent or predictor 
variables) are extensions of the basic model. Fundamentals of GLM and 
modeling are provided in McCullagh and Neider (1983), Cullen (1985), Neter, 
Wasserman, and Kutner (1985), and Dobson (1990). 

Milliken and Johnson (1984, 1989) present practical approaches and methods of 
data analysis for experimental designs and parametric data that are plagued 
with the well-known problems associated with field data: failures in 
assumptions, unbalanced designs, lack of replication, repeated measures, 
multiple comparisons, outliers, and missing data. 
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Analysis of Variance (ANOVA). 

ANOVA is a statistical analysis procedure that examines and explores sources of 
variation in sample data. Details in the theory and application of ANOVA can be 
found in any basic statistics textbook. Particularly useful are Myers and Well 
(1995), Sokal and Rohlf (1995), Underwood (1997), and Zar (1999). ANOVA tests 
the null hypothesis that there is no difference in a variable of interest among two 
or more populations classified by one or more criteria. These criteria are called 
factors and are commonly referred to as treatments and controls. Valid 
replication and interspersion for all treatments are critical (see Krzysik 1998a). 
Essentially, ANOVA uses the F-test statistic to assess if the magnitude of the 
ratio of the variability between treatments to variability within treatments is so 
high that it is unlikely to occur by chance alone at an a priori selected a error 
rate, and the null hypothesis is rejected. Conversely if the ratio is small, the 
observed ratio of variances could have occurred by chance, and the null 
hypothesis cannot be rejected. 

In the simplest case of one-way ANOVA, the variable of interest is tested in two 
or more populations (groups) that are classified by a single factor or treatment. 
When there are only two groups, the analysis is called a Student's t-test. The 
Student's t-test for comparing a single mean to a known population value is used 
if the researcher wishes to compare sample data from a population to a standard 
reference value. The Student's t-test is appropriate if (1) only one treatment 
level is used, (2) one response variable is measured, (3) the data represent 
random sample of size n, and (4) the sample data come from a population with a 
normal distribution (Steel and Torrie 1980). 

When more than one factor is present, the analysis is called a factorial ANOVA. 
A factorial ANOVA design is much more powerful than using separate one-way 
ANOVAs (i.e., one for each factor). In the case of a two-factorial design, for 
example, not only can the main effects of factor A and factor B be assessed, but 
their interaction effects (a x b) can be as well. Sokal and Rohlf s (1995) classic 
three-factor experimental example measured the survivorship of minnows 
(variable of interest) at five different cyanide concentrations (factor A), at three 
different temperatures (factor B), and at three oxygen concentrations (factor C). 
Thus ANOVA with just a single variable can be extended to test many factors, 
but the inherent complexity of ever increasing multiple interaction effects make 
interpretation tenuous. For example, with only three factors the possible 
interaction effects are: a x b, a x c, b x c, and a x b x c. 

Nested ANOVA experimental designs are particularly important for ecological 
field studies because they help to achieve valid replication and interspersion of 
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study plots or samples (Krzysik 1994, 1998a). Nested ANOVAs can be applied to 
any number of factors (including one) and refers to the provision of two or more 
randomized subgroups within each population or primary group. 

Potvin (1993) distinguished between fixed and random factor effects for ANOVA. 
(See also Krzysik 1994, 1998a.) Fixed factors are drawn from samples that 
represent specific levels of interest deliberately chosen by the researcher, while 
random factors are drawn from samples that represent all conceivable levels for 
the entire population. For example, in a fixed factor effects design, a researcher 
may choose to investigate the effects of white phosphorus concentration levels of 
2.5 and 3.5 ppm on triglyceride metabolism in wood storks. In a random factor 
effects design, however, the researcher would choose to study the potential for 
metabolic changes in wood storks at concentration levels of white phosphorus 
randomly selected from all possible levels. If a treatment level effect is fixed, 
then conclusions cannot be generalized beyond the levels used in the study 
(Potvin 1993). 

Balanced ANOVAs are required to obtain unambiguous interpretation of 
interaction effects and overall significance. Balanced means that there are equal 
observations in each experimental treatment. Balanced designs cannot always 
be used for the practical collection of ecological field data. Shaw and Mitchell- 
Olds (1993) review ANOVA for unbalanced designs and provide guidelines for the 
analysis of fixed effects models. 

In repeated-measures analysis, the same experimental or sampling unit is 
measured for more than one variable, or the same unit is measured more than 
one time. Repeated-measures analyses are recommended for evaluating trends 
over time, for assessing pre-impact and post-impact effects of S/O in acute and 
chronic bioassay studies, and for monitoring very small populations. Repeated- 
measures analysis represents an important statistical protocol that can be ana- 
lyzed as a univariate, randomized complete-block or split-plot ANOVA design, or 
as a multivariate ANOVA (MANOVA). MANOVA is used to simultaneously as- 
sess the relationships between one or more treatments (independent variables) 
and two or more dependent variables. Crowder and Hand (1990) and Stevens 
(1996) have more details. Univariate designs are explained in basic texts such 
as Sokal and Rohlf (1995) or Zar (1999). A repeated-measures design, with the 
use of a unit as its own control, improves statistical power, sometimes dramati- 
cally, because variability among subjects due to individual differences is removed 
from the error term in variance comparisons (Stevens 1996). Smaller error vari- 
ance terms (denominator in the F-test ratio) can detect significant differences at 
a given value of alpha with smaller between-variance components. Additionally, 
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fewer experimental subjects are required than in completely randomized de- 
signs. 

A great deal of controversy exists over the relative merits, preference, and selec- 
tion of univariate or multivariate repeated-measures approaches (von Ende 
1993; Stevens 1996).* Barcikowski and Robey (1984) and Stevens (1996) suggest 
that both univariate and multivariate analysis be conducted to determine if the 
two approaches differ in detecting treatment effects. Stevens (1996) further rec- 
ommends adjusting the degrees of freedom by averaging e ("error" or "residual") 
from both the Greenhouse-Geisser and Huynh-Feldt corrected probabilities, and 
using an a = 0.025 for both univariate and multivariate tests. 

For exploratory analysis, both univariate and multivariate models should be 
analyzed and compared, and dependent variables should be analyzed both sepa- 
rately and in combination. As an additional suggestion, raw data should be 
transformed to stabilize variances and distributions (Krzysik 1998a). 

Analysis of Covariance (ANCOVA). 

ANCOVA is a statistical procedure that encompasses both ANOVA and linear re- 
gression. ANCOVA is used when the means of two or more populations are being 
compared, but the variable of interest is confounded by another variable that 
may or may not have the same effect on the populations. This variable is called 
a covariate, and linear regression is used to "adjust" for its influence. One of the 

Mead (1988: Section 14.5) and Underwood (1997: Section 12.5) discuss the problems and assumptions with use 

of time as a within-subject factor. They favor multivariate approaches, because their main concern is noninde- 

pendence of temporal measurements. Additionally, an important consideration is that MANOVA requires fewer as- 

sumptions of homogeneity of variances and covariances across subject trials and factors (Wilkinson, Blank, and 

Gruber 1996). For example, the important assumption of sphericity, which requires the variances of the differ- 

ences of all pairs of repeated-measures being equal, is not necessary (Stevens 1996). However, MANOVA also 

requires adequate sample sizes; for repeated-measures, sample size must be higher than k + 10, where k is the 

number of levels in the within-subjects measure (Maxwell and Delaney 1990). General consensus has been that 

univariate approaches, while having higher power, require more rigorous assumptions (Gurevitch and Chester 

1986). However, ANOVA and MANOVA are robust to deviations from normality, and heterogeneous variance— 

covariance structure is more important (Underwood 1997). Box's M test (Box 1949) can be used to test if the co- 

variance matrices of dependent variables are homogeneous across all level combinations of between-subjects fac- 

tors. Box's test is very sensitive to non-normality (Stevens 1996), inspiring further confidence in normality assump- 

tions. Shapiro-Wilk's test (Shapiro, Wilk, and Chen 1968) should be used for formally testing the assumption of 

normality. Levene's test (Levene 1960) should also be used to test for equality of error variances of each depend- 

ent variable among groups. 
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important tests of ANCOVAis to assess if the regression lines of the populations 
under analysis possess similar slopes. 

The most important uses of ANCOVA are (Steel and Torrie 1980): (1) control er- 
ror and increase precision, (2) adjust treatment means of the dependent variable 
for differences in sets of values of corresponding independent variables, (3) assist 
in data interpretation of treatment effects, (4) partition total covariance into 
components, and (5) estimate missing data. Snedecor and Cochran (1989), Sokal 
and Rohlf (1995), and Underwood (1997) present good treatments of ANCOVA. 

The concept of ANCOVA can most readily be shown by an example. Suppose we 
want to test the effect of altitude on egg production by a given species of sala- 
mander. The hypothesis could be that, because lower elevation populations are 
exposed to milder temperatures (and therefore longer seasonal activity and in- 
vertebrate prey availability), lower elevation populations (for a given body size) 
should produce larger egg clutches. This is a straightforward ANOVA problem. 
It is also known, however, that body size directly affects egg production (larger 
salamanders have larger egg clutches), and altitude may also affect population 
body size. Therefore, clutch size is potentially determined by two factors: eleva- 
tion and a linear relationship (after transformation) with body size. ANCOVA is 
the appropriate statistical model to use in this case, where body size is treated as 
a covariate, essentially "correcting" for this factor when the interest is the vari- 
ability in egg production between two elevations. 

In certain types of manipulative studies, direct methods for increasing precision 
and removing bias through the experimental design are not possible. In such 
cases, ANCOVA may allow the researcher to control variability due to experi- 
mental error by using statistical analyses procedures after the data are collected 
(Winer 1962). The assumptions for ANCOVA are the same as for analysis of 
variance, plus the three assumptions listed below (Stevens 1992). Violations of 
any of the following three assumptions will seriously affect the validity of test 
results: 

1. A linear relationship exists between the dependent variable and the covariates 
(data transformations, such as the logarithmetic, can change a nonlinear rela- 
tionship into a linear one) 

2. The slope of the regression line is the same in each group — tested statistically 
based on the data 

3. The covariates are measured without error. 
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Regression and correlation analysis. 

Regression analysis. Regression analysis represents the important model: 

y = m{xj + b{ + error 

When I = 1, j = 1: Simple linear regression. 

When I = 1, j = 1, 2,.... k (k usually < 4):    Simple polynomial or nonlinear 
regression. 

When I = 1, 2,.... n, j = 1: Multiple linear regression. 

When I = 1, 2,.... n, j = 1, 2,.... k (k usually < 4): Multiple polynomial regression. 

Although regression analysis is well covered in the fundamental texts referenced 
earlier in this section, other valuable texts include: Draper and Smith (1981); 
Montgomery and Peck (1982); Cohen and Cohen (1983); Neter, Wasserman, and 
Kutner (1985); and Chatterjee and Price (1991). 

Other regression analyses that have extensive applications in ecology are logistic 
regression and locally weighed scatterplot smoothing (LOWESS) regression 
(Trexler and Travis 1993). Logistic regression deals with dichotomous (bivari- 
ate) or polychotomous dependent variables and transforms the data to model bi- 
nomial or multinomial distributions. LOWESS models the relationship between 
a dependent (response) variable and independent variables under the assump- 
tion that neighborhood values of independent variables within a given range are 
better indicators of the dependent variable in that same range. 

Correlation analysis. The correlation coefficient, p, is a measure of the 
strength of the relationship between two variables. The value for p ranges from 
-1 to +1. If p = 0, then the variables are not correlated. If p = +1, then the vari- 
ables are perfectly and positively correlated; as the value of one variable in- 
creases, the value of the other variable increases. If p = -1, then the variables 
are perfectly and negatively correlated; as the value of one variable increases, 
the value of the other variable decreases. 

The coefficient of determination, r2, is the square of the correlation coefficient. It 
describes the amount of variation in the dependent variable that can be attrib- 
uted to the independent variable. 
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Nonparametric Methods 

Nonparametric statistics (NPS) are also called distribution-free statistics, be- 
cause they make no assumptions about test statistic distribution (e.g., a normal 
distribution) and other behaviors. They are also required for the analysis of or- 
dinal or categorical data. Many researchers believe that nonparametric methods 
possess low power in contrast to parametric tests. In reality, the difference is 
not practically significant (Siegel 1956; Hollander and Wolfe 1973; Noether 
1987). What is not always appreciated, however, is that NPS, like parametric 
tests, are also subject to the same two most important limitations and violations 
of statistical analyses — nonindependence of sampling errors (the need for ran- 
dom sampling) and the loss of statistical power when sample sizes are too small 
(e.g., Box, Hunter, and Hunter 1978; Stewart-Oaten 1995). Additionally, high 
heterogeneity among sample variances also can affect these tests. The chi- 
square test is the best known nonparametric test and perhaps the most misused. 
Siegel (1956), Hollander and Wolfe (1973), and Connover (1980) are fundamental 
texts for nonparametric analysis. Siegel's book presents a very useful classifica- 
tion table of nonparametric methods to guide the user. The basis for the classifi- 
cation is number of sample comparisons and data scale (nominal, ordinal, or in- 
terval). 

Academic controversy in the literature concerns the use of NPS statistics.  The 
basic argument goes like this: 

Proponents — Because NPS possess almost the same power as parametric tests 
and avoid the assumption that the data are normally distributed, while environ- 
mental data are usually non-normal, NPS should be more routinely used in eco- 
logical research and monitoring (e.g., Potvin and Roff 1993). 

Opponents — Parametric tests are more powerful and reasonably robust to the 
stated assumptions. NPS do not help with the serious violations of independence 
and heteroscedasticity. Both approaches are sensitive to small sample sizes and 
strongly unbalanced data. The assumption of normality is the least stringent as- 
sumption and effectively treated with appropriate transformations. NPS have 
their own assumptions, which are not often appreciated. NPS should not be used 
(as it is sometimes) as an alternative to poorly conceived experimental or sam- 
pling designs or poor field procedures or just poor data (e.g., Johnson 1995; Smith 
1995; Stewart-Oaten 1995; Underwood 1997). 

A survey of some common nonparametric tests follows. 
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Chi-square test. The chi-square test is the most familiar and frequently used 
nonparametric test. Biology students receive an early exposure to it in introduc- 
tory genetics courses. The value of the chi-square test is its potential broad ap- 
plicability, including its compatibility with nominal scale data. This test is used 
to determine the significance of the differences among N independent groups 
when the research data consists of frequencies in discrete categories (either 
nominal or ordinal). 

Cochran's Q-test. Cochran's Q is a method for testing if three or more 
matched sets of frequencies or proportions differ significantly among themselves. 
The data can be nominal or dichotomized ordinal. Cochran's Q-test is an N- 
samples extension of the McNemar test for the significance of changes in two re- 
lated samples. This test is useful when a group of individuals has been tested at 
least three times, and binary data have been collected to characterize a trait or 
attribute (Sokal and Rohlf 1995). The binary data are coded as Is and Os and 
are analyzed as a modified two-way analysis of variance for a stratified design. 
A situation where a Q-test would be appropriate would be the measurement of 
leaf chlorophyll concentrations (low, high) for 30 purple Balduina {Balduina at- 
ropurpurea) plants in 3 time periods (early, mid-, and late summer). 

Mann-Whitney U test (MWUT). MWUT is the most powerful and useful non- 
parametric alternative to the t-test (Siegel 1956). It is useful when parametric 
assumptions are strongly violated or the data are ordinal. MWUT possesses 
greater statistical power than the t-test when the parametric assumption of 
normality is violated (Connover 1980). 

Kolmogorov-Smirnov (K-S) two-sample test. The K-S two-sample test is the 
nonparametric equivalent of a t-test for comparing two means. The K-S essen- 
tially tests two cumulative distributions to assess if they are statistically homo- 
geneous, and is sensitive to distribution differences in location (i.e., means), dis- 
persion, and skewness (Siegel 1956). The test is used to determine if two 
populations are equivalent with respect to some measured characteristic. 

Kolmogorov-Smirnov goodness-of-fit test. This K-S test compares the distri- 
bution of a sample with a known frequency distribution and determines if the 
two distributions are significantly different. 

Kruskal-Wallis test. The Kruskal-Wallis test is a one-way analysis of vari- 
ance by ranks. It is the nonparametric equivalent of one-way ANOVA, and is 
used to test if N independent samples are from different populations or the popu- 
lations are homogeneous (the null hypothesis). 
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Spearman rho and Kendali tau b rank correlation tests. These correlation 
tests evaluate the degree of association or correlation between two independent 
variables measured on an ordinal scale. They represent the nonparametric 
equivalent of the parametric Pearson's correlation coefficient. 

Wilcoxon signed-rank test. The signed-rank test is a nonparametric test for 
making paired comparisons between two variables. 

Computer Intensive Methods (CIM) 

Computer intensive procedures include a heterogeneous class of statistical tech- 
niques, some of which are closely related while others are completely unrelated. 
Their unifying theme is that they require extensive computer power, and have 
only recently become popular with the development of economical high speed mi- 
crocomputers. CIM include: Monte Carlo resampling methods, the calculation of 
exact P-values (parametric and nonparametric), jackknifing and bootstrapping, 
permutation tests, and randomization tests. Important references include Miller 
1974, Efron 1982, Edgington 1987, Noreen 1989, Efron and Tibshirani 1991, 
Manly 1991, Shao and Tu 1995, Weerahandi 1995. CIM can also be used for 
multiple comparisons (Westfall and Young 1993). These techniques are particu- 
larly useful for "messy data" (e.g., Milliken and Johnson 1984, 1989), which in- 
clude: small sample sizes, unbalanced data (dramatic differences in sample sizes 
of comparisons), strongly skewed data, heterogeneity in residuals, data possess- 
ing strange distributions, missing observations, and outliers. For a practical ap- 
plication in the use of CIM for population monitoring of a threatened species (de- 
sert tortoise), see Krzysik (1997,1998a). 

Researchers are generally unaware that both parametric and nonparametric 
tests in a fundamental way rely on asymptotic behavior, which requires reason- 
able sample sizes and balanced data (Krzysik 1998a). Asymptotic theory is not 
valid for data sets that are small, highly skewed, sparse, or unbalanced. Statis- 
ticians have been aware of the dilemma. "The difficulty of exact calculations 
coupled with the availability of normal approximations leads to the almost auto- 
matic computation of asymptotic distributions and moments for discrete random 
variables How does one justify them? Rigorous answers to [this] 
question ... require some of the deepest results in mathematical probability 
theory" (Bishop, Fienberg, and Holland 1975). These limitations have been 
recognized for quite some time, and Fisher (1935) suggested the use of permuta- 
tional P-values for randomized experiments. The routine use of permutation 
methods by researchers directly depends on the availability of economic high- 
powered microcomputers.   Today, it is easy to compute exact permutated P- 



EBDC/CERL TR-01 -59  67 

values for both nonparametric and parametric tests and thus avoid asymptotic 
assumptions (Mehta, Patel, and Wei 1988; Agresti, Mehta, and Patel 1990; Good 
1994). For a discussion of jackknifing and bootstrapping see Krzysik (1998a). 

Multivariate Methods 

The definition of multivariate statistical methods has not been consistent in 
textbooks or in the technical literature. In the general sense, multivariate sta- 
tistics refer to a large body of techniques that deal with the analysis, relation- 
ships, and interpretation of multiple-variable data sets. In its most liberal defi- 
nition, multivariate analysis is the analysis of more than two variables. This 
contrasts with univariate analyses which, in their simplest form, consist of ei- 
ther one dependent and one independent variable (simple linear regression) or 
two independent variables (bivariate correlation). 

Multiple regression involves two or more independent variables, but only one 
dependent variable. Is this a univariate or multivariate technique? Differences 
in usage can vary from one source to another. If multivariate analysis is the 
measure, interpretation, and prediction of the relationships among multiple 
weighed combinations of variables (variates), then multiple regression is a mul- 
tivariate technique. It is less ambiguous, however, and used as such for this re- 
port, to reserve multivariate terminology for situations involving more than one 
dependent variable. Multivariate statistics can therefore be defined as the 
analysis and exploration of data sets containing two or more independent vari- 
ables and two or more dependent variables. Comparable to the univariate case, 
parametric assumptions are analogous: multiple variables are assumed to have 
a multivariate normal distribution, variance and covariance matrices are as- 
sumed to be homogeneous, and the multiple variables possess independent er- 
rors. Excellent introductions to multivariate analyses include: Pielou (1984), 
Manly (1986), Digby and Kempton (1987), James and McCulloch (1990), and 
Marcoulides and Hershberger (1997). For additional references, applications to 
military training effects, and ecological assessment and monitoring, see Krzysik 

(1987,1998a). 

Multivariate Analysis of Variance (MANOVA) 

MANOVA is used to simultaneously assess the relationships between one or 
more treatments (independent variables) and two or more dependent variables. 
Using the minnow example cited above, the dependent variable was survivor- 
ship. Another dependent variable that could have been added into the experi- 
ment  is  respiratory  rate,   making  the   analysis   a  three-factor  MANOVA 
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MANOVA is discussed under repeated-measures analysis in the earlier section 
on Analysis of Variance (ANOVA) under Univariate Statistics. 

Multivariate Analysis of Covariance (MANCOVA) 

The MANCOVA procedure is similar to ANCOVA, except that more than one de- 
pendent variable is under consideration. See the earlier section on Analysis of 
Covariance (ANCOVA) under Univariate Statistics. 

Canonical Correlation Analysis (CCA) 

Multiple correlation analysis describes the relationships among linear combina- 
tions of two or more variables with another single variable. CCA is an analogous 
technique when there are two sets of two or more variables. As in bivariate cor- 
relation, the variables are symmetric, with no assignment of predictor or crite- 
rion designations. Assuming that there are n variables in both variable sets x 
and y, CCA involves finding n linear combinations of x variables (canonical vari- 
ates or scores, vector X) and n linear combinations of y variables (canonical vari- 
ates or scores, vector Y), such that vectors X and Y have maximum correlation. 

At first glance this appears to be a very valuable tool for environmental studies, 
because there are many instances where it would be important to correlate the 
relationships between two variable sets. Unfortunately, CCA is very sensitive to 
multivariate parametric assumptions, especially to nonlinearity among the 
original variables and also among canonical variates (linear combinations of in- 
dividual variables). Linear relationships among environmental variables are ex- 
traordinarily rare and atypical in nature and in environmental processes 
(Krzysik 1987). 

An example of the use of CCA is the measuring of many habitat variables in a 
number of sampling plots (e.g., biomass and cover of forbs and grasses, shrub 
density, canopy cover, basal area of trees, substrate texture, and soil parame- 
ters). Concurrently at the same sampling plots, data are gathered on the species 
abundances of birds, small mammals, foliage arthropods, and soil litter inverte- 
brates. There are now two major data sets: one with a large number of descrip- 
tive habitat variables and another with a large number of population abundance 
variables. In theory, CCA could provide the optimal linear combinations of habi- 
tat variables and of species abundance variables that would best describe the re- 
lationship between the two variables. 
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Principal Component Analysis (PCA) 

PCA "produces newly-derived variables from linear combinations of the original 
variables (often highly correlated), such that most of the original variance in the 
original data is expressed in as few as possible new uncorrelated variables; and 
is a powerful procedure for ordination, data reduction, data transformation, and 
data standardization" (Krzysik 1998a). The most fundamental mathematical 
description of a multi-parameter environmental gradient is a principal compo- 
nent solution (Krzysik 1987). Environmental gradients are inherent in all eco- 
logical and landscape phenomena. Derived principle components can be used in 
additional statistical analyses. 

Discriminant Analysis (DA) 

DA is used to describe the nature and extent of differences among groups in mul- 
tivariate analysis of variance applications and to classify subjects into groups 
based on multiple measurements. Classification procedures assign subjects into 
one of several groups based on common characteristics. The subjects are as- 
signed to the groups based on how closely their individual classification scores 
resemble the classification score for each group as a whole. For example, T&E 
species may be placed into groups of low, moderate, and high risk of exposure to 
S/O based on mathematical scores describing physiological or behavioral charac- 
teristics (e.g., adaptation to presence of S/O, nesting behavior, food sources, prox- 
imity to S/O training). 

DA is a popular multivariate technique because it possesses the potential of 
quantitatively identifying the relative importance of predictor variables in group 
classifications. Conversely, on the basis of predictor variables, it can classify 
measured objects or elements into the groups of a previous classification. DA is 
often used inappropriately because it is unusually sensitive to assumption viola- 
tions, particularly to the heterogeneity of group covariance structure (Krzysik 
1987). This technique should only be used with caution or by experienced statis- 
tical practitioners. 

Interpretation and Presentation of Results 

When statistical results are reported, information concerning the reliability of 
parameters should be summarized. The minimum information for analysis re- 
sults should always include: sample size, standard deviation (sometimes stan- 
dard errors or confidence intervals are more appropriate), type of analysis proce- 
dure used to obtain results, and the computer package and version used to 
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generate the result (Ellison 1993; Taylor 1990). Additionally, a statistical power 
analysis should be conducted and the results reported (Cohen 1988). 

Stressor-response. analysis (U.S. EPA 1992) is used to describe the relationship 
between the amount, frequency, or duration of a stressor and the magnitude of 
response. In situations where only a limited number of observations can be 
taken, or where surrogate species must be used, extrapolation of results may be 
necessary to estimate the effects over a wider range of conditions than are pre- 
sent in the actual study. Types of extrapolations often used in the context of risk 
assessments (U.S. EPA 1992) and other studies are: 

1. Extrapolation between taxa (e.g., measure response of one species, then extend 
results to other species) 

2. Extrapolation between responses (e.g., measure one level of response (LDg,), then 
extend results to other levels (no observed effect level) 

3. Extrapolation from laboratory to field (e.g., measure mouse mortality under labo- 
ratory conditions, then extend results to field conditions) 

4. Extrapolation from field to field (e.g., conduct study in one training area or eco- 
system, extend results to other training areas or ecosystems) 

5. Analysis of indirect effects (e.g., relating reduced food or habitat resources to re- 
duced T&E species populations) 

6. Analysis of higher organizational levels (e.g., relating survival of individual or- 
ganisms to population size) 

7. Analysis of spatial and temporal scale (e.g., evaluating loss of a specific habitat 
area to the larger scale habitat requirements of a species) 

8. Analysis of recovery (e.g., relating short-term effects of catastrophic events to 
long-term species survival). 

Statistical Significance Versus Ecological Significance 

Statistical significance is used to denote whether the data collected support or 
fail to support a null hypothesis in manipulative research. If the data support 
the null hypothesis, then the response to the treatment under consideration is 
considered to be essentially the same as the hypothesized response. If the data 
fail to support the null hypothesis, then the response to the treatment under 
consideration is considered to be significantly different from the hypothesized 
response. The researcher must interpret the results of the study in the context 
of nature and magnitude of the effects, the spatial and temporal patterns of the 
effects, the likelihood that the effects will occur in a natural context, and the re- 
covery potential of a system from the effect observed (U.S. EPA 1992). 

Biological or ecological significance represents biological realism and common 
sense directly in the context of actual ecological systems and their inherent vari- 
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ability and unpredictability. "Statistical significance is only relevant to sample 
size in the specific context of the probability of finding an observed difference by 
chance alone relative to the inherent variability in the system under investiga- 
tion. Biological relevance does not enter into the equation. Statistical signifi- 
cance will always be assured as long as sample size is made large enough, to 'sta- 
tistically detect' even the smallest differences. Differences that are undoubtedly 
irrelevant to the normal course of biological variability" (Krzysik 1998a). 

Lovett (1994) found that short-term studies on atmospheric deposition of pollut- 
ants can be misleading because individual portions of the longer-term record 
considered separately would indicate increases, decreases, or no change. The 
real trends in the data can be obscured by short-term fluctuations as a result of 
the extreme variability often found in these kinds of studies. 

Relationship Between Statistics and Ecological Risk Assessment 

Effects of S/O on T&E species may be most effectively assessed in the context of 
an ecological risk assessment (Sample et al. 1997). Statistics may be applied in 
two ways in performing ecological risk assessments: in models for assessment 
and to quantify uncertainty. 

Suter and Barnthouse (1993) discuss methods of assessment applicable to eco- 
logical risk assessment, including physical methods (test systems as discussed in 
Sample et al. 1997) and quantitative methods, both statistical and mathemati- 
cal. Because there is no universal method for quantifying ecological risks, all 
having limitations, these methods are often complementary ways to quantify ex- 
posures, effects, and risks. 

Statistical models attempt to derive generalizations by using statistical tech- 
niques, such as ANOVA, regression, or principal components analysis (described 
earlier) to summarize experimental or observational data (Suter and Barnthouse 
1993). Toxicologists, for example, obtain dose-response models by statistically 
fitting a continuous function such as the probit to the discontinuous results of 
toxicity tests of discrete doses. Such a model assumes that the sensitivities of 
exposed organisms to a toxic chemical can be characterized by statistical distri- 
bution with a mean and a variance. 

Suter and Barnthouse (1993) list three purposes for using statistical models in 
risk assessment: hypothesis testing, description, and extrapolation. Hypothesis 
testing has been used in risk assessment to calculate "no effects" concentrations 
in toxicity tests and comparison of contaminated and reference sites in monitor- 
ing studies. Caution is required, however, when using hypothesis testing in risk 
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assessment because, as stated earlier, statistical significance is not the same as 
ecological significance. Contaminant concentrations in soil, for example, may 
average 10 times the average background concentration and may be above phy- 
totoxic levels but still not be "significantly elevated" in strictly statistical terms. 

The second use of statistical models is description. For example, a multivariate 
classification method such as principal component analysis might be used to dis- 
tinguish the sets of natural and contaminant-affected communities of organisms 
within an ecosystem. 

The third use of statistical models is extrapolation. For example, a concentra- 
tion-response model of a red-winged blackbird toxicity test that describes the re- 
sponse under laboratory conditions may be extrapolated to red-winged black- 
birds in the field, to an endangered bird species with relevant similarities (e.g., 
red-cockaded woodpecker), or to birds in general. Such extrapolations must usu- 
ally be applied in the case of endangered species. Data extrapolations require 
that the assessor either assume the systems being compared respond identically 
or use some extrapolation model (Suter and Barnthouse 1993). 

Strictly speaking, a statistical model does not identify causal relationships be- 
tween independent and dependent variables but simply summarizes the rela- 
tionship between the variables. However, assignment of biological or physical 
meaning to the fitted coefficients allows more interpretive weight (Suter and 
Barnthouse 1993). 

The most important feature distinguishing risk assessment from impact assess- 
ment is emphasis on characterizing and quantifying uncertainty (Suter and 
Barnthouse, 1993). Of particular interest in ecological risk assessment are three 
types of uncertainty that contribute to "analytical uncertainty," or uncertainty in 
estimating the credibility of a predicted value (Suter, Barnthouse, and O'Neill 
1987). These types are natural stochasticity, parameter error, and model error. 
The first two types can be quantified using statistical models. Although straight- 
forward in concept, use of statistics to quantify uncertainty is complicated in 
practice by the need to consider measurement errors in both the dependent and 
independent variables and to combine errors when multiple extrapolations must 
be made (Linder 1987). 
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4  Summary 

This report provided a general overview of sampling designs and statistical pro- 
cedures for assessing the effects of military S/O on T&E species. Important fun- 
damental principles were summarized and documented with extensive literature 
references to provide more detailed information. 

Sampling design considerations and strategies were discussed. Types of sample 
designs and appropriate conditions for the use of each were identified. 

Also discussed were statistical analysis considerations. Data types and charac- 
teristics of data quality were identified. Approaches to statistical analysis were 
identified and discussed. The six general approaches to statistical analysis dis- 
cussed were estimation, description, exploratory analysis, inference, modeling, 
and spatial analysis. Specific statistical analysis methods were identified and 
conditions for the use, as well as cautions and pitfalls to avoid, were described 
for each method. Univariate and multivariate methods were addressed. As- 
sumptions upon which parametric methods are based were stated, and specific 
parametric and nonparametric methods discussed. 

Guidance was provided for interpretation and presentation of statistical results. 
Finally, statistical significance versus ecological significance and the relation- 
ship between statistics and ecological risk assessment were discussed. 
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Appendix A:   Symbols 

a alpha; Type I error 

ß beta; Type II error 

CI confidence interval 

CV coefficient of variation 

HA alternative hypothesis 

H0 null hypothesis 

u mu; population mean 

u0 mu naught; population mean for a given reference population 

n number of observations 

p rho; population correlation coefficient 

r sample correlation coefficient 

r2 coefficient of determination 

s sample standard deviation 

s - sample standard error 

s2 sample variance 

a omicron; population standard deviation 

o2 population variance 

t t statistic; value for Studentized t-test 

x x bar; sample mean 

x x sub I; ith observation in a sample 
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Appendix B:   Glossary of Terms 

Accessible population - The experimental or sampling units that are actually 
measured in order to determine an effect; such units may act as surrogates or 
substitutes for the true units of interest, when taking measurements on the true 
units is restricted or prohibited. 

Accuracy - The amount of systematic error present in a series of measure- 
ments. 

Alpha (a) - The significance level for a hypothesis test; the probability of mak- 
ing a Type I error, or the probability of rejecting a true null hypothesis; the 
probability that a given observation will exceed a given critical value if the data 
are normally distributed. 

Alternative hypothesis (HA) - A statement that indicates the condition that is 
expected to be true if the null hypothesis, H0, is not true. See Null hypothesis. 

Ambient chemical concentration - Amount of chemical per unit volume of 
medium (e.g., air, water, soil) in an open environment. 

Analysis of covariance (ANCOVA) - A statistical procedure that encompasses 
both ANOVA (see below) and linear regression. ANCOVA is used when the 
means of two or more populations are being compared, but the variable of inter- 
est is confounded by another variable that may or may not have the same effect 
on the populations. This variable is called a covariate and linear regression is 
used to "adjust" for its influence. One of the important tests of ANCOVA is to 
assess if the regression lines of the populations under analysis possess similar 
slopes. 

Analysis of variance (ANOVA) - A statistical analysis procedure to compare 
the means of two or more statistical populations and/or treatments. It can also 
refer to the examination and exploration of sources of variation in sampled data. 
In this case, it is usually referred to as Variance Component Analysis. 
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Beta (ß) - The probability of making a Type II error; the probability of failing to 
reject a false null hypothesis; the probability of predicting that no difference ex- 
ists when a difference is present. 

Bias - Systematic error that is associated with a given measurement process 
and always has the same sign and magnitude. 

Bioaccumulation - The uptake/collection of a chemical from the environment 
into the body of an organism from all routes of exposure. 

Bioconcentration - The uptake of a chemical from water by aquatic organisms. 

Biomagnification - The tendency of some chemicals to accumulate to higher 
concentrations in organisms at higher levels in the food chain through dietary 
accumulation. 

Central tendency - The clustering of a set of measurements about a single 
value that is located approximately midway through the. range of values when 
they are sorted in numerical order. 

Classical statistics -Analytical procedures used with manipulative experimen- 
tal designs to test hypotheses about the condition of the population; inferential 
statistics. 

Coefficient of determination (r2) - A measure of the amount of variation in 
the dependent variable that can be attributed to the independent variable. 

Coefficient of variation (CV) - A relative measure of the amount of spread or 
variability for a set of measurements; defined as the standard deviation divided 
by the mean. 

Completely randomized design - An experimental or sampling design that 
uses a simple random selection process to choose the experimental or sampling 
units; each unit has an equal and known probability of being selected for meas- 
urement. 

Conceptual model - A visual or mathematical aid to demonstrate important 
relationships and hypothesized interactions between Stressors and organisms 
(e.g., S/O and T&E species or T&E habitats). 

Confidence level - The degree of certainty the researcher may place in the 
process used to generate the results of a statistical test. 
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Confounding factors - Influences other than the ones being explicitly studied 
that affect the response of a system. 

Continuous data - Numbers with measurement uncertainty associated with 
them. 

Correlation - The strength of the relationship between two variables. 

Data quality - The accuracy, reliability, and representativeness of measure- 
ments. 

Degrees of freedom - The amount of information necessary to completely 
characterize a dependent variable, expressed as the difference between the num- 
ber of observations and the number of parameters used to estimate variation in 
the model. 

Dependent variable - The name for a set of values that are indirect estimates 
of a characteristic or property of the population of interest. For example, if the 
weights of several individuals in rainbow trout population were estimated from 
known measurements of their lengths, "Weight" would be the dependent vari- 
able, and "Length" would be the independent variable. 

Descriptive statistics - Analysis methods used to summarize properties of a 
population, rather than test hypotheses. 

Deterministic model - Assume that conditions in the equations remain fixed 
and constant (i.e., no statistical uncertainty is included in the model), and may 
be used to describe parameters associated with basic environmental/T&E species 
states and processes, such as age structure, population size, reproduction rates, 
environmental conditions, and population growth. 

Discrete number - A number with an exact value; a number with no uncer- 
tainty due to measurement error. 

Discriminant analysis - A multivariate statistical procedure that evaluates 
several dependent variables in order to assign the various experimental units to 
distinctive groups. 

Dispersion (chemical) - The movement, diffusion, and dissipation of a sub- 
stance (e.g., of a gaseous suspension of particles in the air). 
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Dispersion (statistical) - The degree of variability, scatter, or spread of data, 
usually around a central value; the extent to which sample data differ from the 
population parameter of interest. 

Distribution (statistical) -An arrangement or pattern of data values around a 
central value that can be described by mathematical functions called probability 
density functions. 

Estimation model - A set of mathematical equations representing the system 
of interest that is used to identify variables that contribute to explaining chemi- 
cal or biological processes and to provide probability estimates for events that 
affect the system. 

Experimental design - The set of plans and instructions by which data are col- 
lected; the field layout for a manipulative study. 

Experimental error - The variation between two observations due to differ- 
ences between treatments in a manipulative study. 

Experimental unit - The smallest subdivision of experimental material (or 
area) that can receive a given treatment. 

Exploratory data analysis - The evaluation of data by summarizing, graph- 
ing, or describing; analysis procedures that do not use hypothesis testing. 

Fixed factor effect - Results obtained by conducting an analysis of variance on 
data taken from samples that represent specific levels of interest deliberately 
chosen by the researcher. 

Homoscedasticity - The occurrence of equal variances among treatment 
groups. 

Hypothesis - A statement of an assumed condition that can be confirmed or re- 
futed by additional testing or observation. 

Independent variable - The name for a set of values that are direct measure- 
ments of a characteristic or property of the population of interest. For example, 
if the measured lengths of several individuals in rainbow trout population were 
used to estimate the weights of the trout, then "Length" would be the independ- 
ent variable, and "Weight" would be the dependent variable. 
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Inferential statistics - Statistical analysis procedures that test the validity of 
a hypothesis. 

Kurtosis - The relative departure of a sample distribution from a normal distri- 
bution in terms of the relative peakedness or flatness of the distribution in the 
neighborhood of the mode. 

Linear regression - A multivariate extension of correlation analysis in which 
the strength of the relationships between several variables is assessed. 

Manipulative study -An experiment characterized by the application of differ- 
ent treatments to different experimental units; an experiment in which events 
are manipulated or influenced by the researcher. 

Mensurative study - The observation or measurement of intrinsic ecological 
phenomena. The researcher makes no attempt to manipulate or influence events 
(i.e., apply a treatment) during the course of the study; instead, time or space are 
used as treatment variables, and inherent properties of the populations or sys- 
tems are the features of interest. 

Multivariate analysis - The analysis of data consisting of more than two de- 
pendent and independent variables. 

Multivariate analysis of variance (MANOVA) -Analysis method that evalu- 
ates sources of variation in sample data when more than one dependent variable 
is present. 

Nonparametric analysis procedure - Statistical analysis procedure that 
makes no assumptions about the distribution of the data; procedure for data that 
does not follow a normal distribution. 

Normal distribution - The normal or Gaussian distribution refers to a pattern 
of data values that is commonly called a bell-shaped curve. 

Null hypothesis (H0) - A formal statement or conjecture to be tested by a sta- 
tistical analysis procedure. The null hypothesis is often worded so as to indicate 
that no change has occurred or no difference exists. 

Outlier - An observation that deviates substantially from the majority of the 
observations in a data set. 
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Parameter - A fixed numerical quantity that describes a characteristic of an 
entire population. Examples of parameters would be mean, median, mode, stan- 
dard deviation, variance, correlation coefficient, and other numbers used to 
summarize data. Parameters are denoted by lower-case Greek characters (e.g., 

u, o, p). 

Parametric analysis procedure - Hypothesis testing procedure based on the 
assumption that the data follow a normal (Gaussian) distribution. 

Pilot study - A small study conducted prior to the main research effort in order 
to collect preliminary information, to finalize field sampling methods, and to de- 
tect weakness in the sampling design. 

Population (ecological) - A group of organisms that are close enough to each 
other to interbreed (i.e., contribute to a common gene pool). 

Population (statistical) - The set of numbers that describes all possible events 
in a defined universe. 

Power (1 - ß) - The probability of not making a Type II error. This determines 
the ability of the statistical test used to detect a true difference when the sample 
size and a are specified. 

Precision - A measure of mutual agreement among individual measurements of 
the same property. 

Predictive model - Mathematical relationships used to characterize system 
behavior beyond the range of the data. 

Principal component analysis - Analysis method that reduces the number of 
variables needed to account for variation in the data by recombining the vari- 
ables into uncorrelated linear combinations. 

P-value - A value calculated by an inferential analysis procedure. The P-value 
is used to determine whether or not to accept the null hypothesis. After a statis- 
tical analysis is concluded, the P-value is compared to the preselected a. If the 
absolute value of the P-value is greater than a, then the null hypothesis is ac- 
cepted, and the alternative hypothesis is rejected. If \p I is less than a, then the 
test has failed to accept the null hypothesis and the alternate hypothesis is ac- 
cepted, "there is a significant difference in the means." 
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Qualitative hypothesis - General statement of an assumed condition that de- 
notes the relative change or difference to be detected for an assumed condition. 
This statement can be confirmed or refuted by additional testing. 

Quantitative hypothesis - Specific statement of the exact amount of change or 
difference to be detected for an assumed condition. This statement can be con- 
firmed or refuted by additional testing. 

Random error - The fluctuation of sample values around the true value of the 
parameter of interest, resulting in nonsystematic differences between the sample 
value and the true value. 

Random factor effect - In an analysis of variance, random factor effects are 
those differences between experimental units that are randomly selected and 
represent all conceivable levels for the entire population. 

Randomization - The assignment of treatments to experimental units in a 
manner that ensures that each experimental unit has an equal probability of re- 
ceiving any given treatment. 

Regression analysis - See Linear regression. 

Rejection criteria - The value for the significance level, a, at which a null hy- 
pothesis will not be accepted. 

Reliability - Data quality that can be documented, evaluated, and believed. 

Repeated measures design - A design in which each experimental or sam- 
pling unit is sampled more than once. If the study is manipulative, all units re- 
ceive all treatments in random sequence. If the study is mensurative, no treat- 
ments are applied, but each unit is measured for more than one trait or sampled 
more than one time. 

Replication - The assignment of a complete set of treatments more than once 
during an experiment. 

Representativeness - The degree of similarity between the conditions present 
in a research study and the true condition of the population of interest. 

Robustness - The ability of a statistical analysis procedure to give correct re- 
sults when underlying assumptions for the procedure are violated. 
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Sample -A subset of a statistical population. 

Sampling design - The set of plans and instructions by which the data are col- 
lected; the field layout for a mensurative study. 

Sampling protocol - A set of written step-by-step instructions for collecting 
and measuring samples. 

Sampling unit - The design elements that are actually measured. 

Sensitivity - The ability of an experimental design to detect true differences if 
they exist; the inverse of the standard deviation for the difference between two 
means. 

Significance (statistical) - The criteria used to denote whether the data col- 
lected support or fail to support a null hypothesis in manipulative research. 

Skewness - The relative departure of a sample distribution from a normal dis- 
tribution in terms of the asymmetry at either tail of the distribution. In other 
words, one of the two tails of the distribution is more drawn out. 

Standard deviation - A weighted measure of distance between the observa- 
tions in a sample and the sample mean; the square root of the variance for a se- 
ries of measurements. 

Standard error - The standard deviation divided by the square root of the 
number of observations. It is used to indicate the relative precision of the stan- 
dard deviation when the measurements come from several sets of observations 
rather than from individual observations. 

Stochastic model - A set of mathematical equations that describe a system of 
interest and that introduce random or chance fluctuations into the system. 

Stratification - The partitioning or subgrouping of a population by known 
characteristics in order to reduce the variability present. 

Student's t-test - Statistical method used to evaluate two populations to de- 
termine if a difference exists between them. 

Surrogate species -A species used as a substitute for another (e.g., a non-T&E 
species used as a substitute to estimate the effects of S/O on T&E species). 
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Systematic error - Deviations from a true value that have the same sign and 
magnitude. 

Systematic sampling - Selection of experimental and sampling units in a pre- 
determined, nonrandom manner. 

Target population - The population about which inferences are to be tested; 
the population of interest. 

Test statistic - The value obtained as a result of conducting a given hypothesis 
test. For example, t is the test statistic for a Student's t-test. 

Treatment - Manipulation of experimental material. 

Type I error - The probability of rejecting a true null hypothesis (i.e., conclud- 
ing from test results that a difference exists, when actually no difference is pre- 
sent). 

Type II error - The probability of failing to reject a false null hypothesis (i.e., 
concluding from test results that no difference exists, when actually a difference 
is present). 

Uncertainty (statistical) - The variability in data due to natural fluctuations. 

Univariate analysis - Statistical procedure to summarize information about 
the distribution of the data when, in its simplest form, only one dependent vari- 
able and one or more independent variables are being evaluated. 

Variability - The difference between the true value of a parameter and the val- 
ues of each measurement used to estimate the true value; natural fluctuations in 
data. 

Variable - Number used to characterize sample data. 

Variance - A weighted measure of distance between the observations in a sam- 
ple and the sample mean. 
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Appendix C:   Acronyms 

ANCOVA Analysis of covariance 

ANOVA Analysis of variance 

ATEC U.S. Army Test and Evaluation Command 

CCA Canonical correlation analysis 

CERL Construction Engineering Research Laboratory 

CIM Computer intensive methods 

CRD Completely randomized design 

DA Discriminant analysis 

EDA Exploratory data analysis 

EPA Environmental Protection Agency 

HC Hexachloroethane 

IDA Initial data analysis 

LOWESS Logistic regression and locally weighed scatterplot smoothing (re- 
gression) 

MANOVA Multivariate analysis of variance 

NPS Nonparametric statistics 

NRC National Research Council 

OSL Observed significance level 

PCA Principal component analysis 

RMD Repeated measures design 

S/O Smokes and obscurants 

SRD Stratified randomized design 

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin 

T&E Threatened and endangered (species) 

TROG Total recoverable oil and grease 

WP White phosphorus 
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Appendix D:   Checklist for Implementation 
of Field Research for Evaluating Effects 
of Military Smokes and Obscurants (S/O) 
on Threatened and Endangered (T&E) 
Species 

Installation: Date: 

Point of Contact:  Telephone: 

E-mail Address:  Fax:   

A. Desired outcome of investigation (examples): 

1. Descriptive record of population abundance, distribution, etc. 

2. Record changes in population over time 

3. Compare two or more populations with each other 

4. Quantify site or habitat conditions 

5. Delineate current status of ecosystem or population 

6. Determine interrelationships between biota or ecosystem and S/O 

7. Characterize S/O concentrations, dispersion, deposition 

8. Quantify direct effects of S/O on T&E species 

9. Other  

B. Population(s) of concern 

1.   Ecological population 

a. T&E species 

b. T&E species surrogates 

c. Non-T&E species 
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2. Habitat 

a. Physical populations 

b. Chemical populations 

3. S/O 

4. Statistical populations (T&E species or S/O traits to be measured) 

C. Parameters of interest (types of statistical summaries — totals, means, me- 
dians, variances, extremes, correlations, etc.) 

D. Facts already known about the situation or problem 

1. T&E species information 

a. Listings of T&E species on the installation 

b. Maps of actual or potential T&E species habitat 

c. Locations of T&E individuals or populations 

d. Identification of critical habitat needs for T&E species 

e. Life history of T&E species 

f. Past and current T&E species population trends 

g. Installation reports/memoranda/pubhcations on T&E species 

h. Other  

2. T&E surrogate species information 

a. Listings of T&E surrogate species on the installation 

b. Maps of actual or potential T&E surrogate species habitat 

c. Locations of T&E surrogate species populations 

d. Identification of critical habitat needs for T&E surrogates 

e. Life history of T&E surrogates 

f. Past and current T&E surrogate species population trends 
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g.   Installation reports/memoranda/publications on T&E surrogates 

h.  Similarities/differences between T&E species and T&E surrogates 

i.   Correlations/extrapolations between T&E species and T&E surrogate 
species responses to military S/O 

j.    Other _____  

3. Non-T&E species information 

a. Lists of non-T&E species on the installation 

b. Maps of actual or potential non-T&E species habitat 

c. Locations of non-T&E species populations 

d. Identification of critical habitat needs for non-T&E species 

e. Life history of non-T&E species 

f. Past and current non-T&E species population trends 

g. Installation reports/memoranda/publications on non-T&E species 

h. Other ' 

4. Military S/O information 

a. Type of S/O 

b. Known physical properties of S/O (e.g., boiling/freezing point, viscos- 
ity, solubility, etc.) 

c. Known chemical composition (e.g., fog oil is a mixture of hydrocarbons 
generally containing 12 to 20 carbon atoms per molecule) 

d. Method of deployment (e.g., stationary or moving generators, smoke 
pots, grenades, etc.) 

e. Maps showing where S/O releases occur 

f .   Quantity of S/O released per unit time period 

g.   Quantity of S/O released per unit area 
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h.  Season and timing of S/O release 

i.   Frequency of S/O release 

j.   Duration of S/O release 

k.  Intensity of S/O release 

1.   Records of past and current S/O use 

For stationary generators 

• Number and location of generators 

• History of current and past configurations 

• History of use 

- For mobile S/O exercises 

• Number and types of S/O releases in a typical exercise 

• Delineation of areas directly affected by S/O exercises (i.e., 
immediate maneuver area) 

• Delineation of areas indirectly affected by S/O drift 

m. S/O dispersion patterns 

n.  Other   

5.  T&E species and S/O interactions 

a. Identification and ranking of research priorities based on 

Military activities most restricted by T&E species 

.   -    T&E species population trends in S/O areas 

- Future anticipated use of S/O areas 

- Other  

b. Delineation of areas where T&E species populations and S/O training 
activities coincide 
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c. Known or anticipated physiological or behavioral changes in T&E spe- 
cies or T&E surrogate species caused by exposure to S/O (e.g., bioas- 
say results) 

d.   Other 

6.   General site information 

a. Terrain maps 

b. Vegetation maps 

c. Digital elevation maps 

d. Soils maps 

e. Other maps 

f. Description of ecosystem 

g. Description of selected microhabitats 

h.  Land-use history 

i.   Ecological history 

j.    Weather data 

Temperature 

Relative humidity 

- Wind speed and direction 

- Precipitation 

k.  Other  

7.   Supplementary information 

a. Types and quantities of nonmilitary chemicals released on or near the 
installation (e.g., agricultural fertilizers, herbicides, or pesticides; in- 
dustrial chemical releases) 

b. Regulatory constraints on military activities and S/O-T&E species re- 
search 
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c. Labor and financial resources available to conduct S/O research 

d. Data from pilot studies, literature reviews, expert opinion, regulatory 

agencies, etc. 

e. Other   

E. Assumptions needed to initiate the investigation 

1. Statistical assumptions 

a. Distribution of the data 

b. Presence or absence of spatial, temporal, or other patterns in the data 

c. Estimated effects of military or nonmilitary activities that might af- 
fect data interpretation 

d. Limitations of sampling design and methods 

2. Ecological assumptions 

a. Estimate of nature and extent of problem 

b. Species and specific populations likely to be affected by S/O 

c. Informed estimates needed to replace knowledge gaps about spe- 
cies/populations and S/O. 

F. Basic nature of the problem: research, inventory, monitoring, or conformance 

G. Temporal nature of the problem: one-time, short-range, or long-range 

H. Spatial nature of the problem: local, regional, or global 
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